Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Characterization of large genomic deletions in the FBN1 gene using multiplex ligation-dependent probe amplification.

  • Larissa V Furtado‎ et al.
  • BMC medical genetics‎
  • 2011‎

Connective tissue diseases characterized by aortic aneurysm, such as Marfan syndrome, Loeys-Dietz syndrome and Ehlers Danlos syndrome type IV are heterogeneous and despite overlapping phenotypes, the natural history, clinical manifestations and interventional course for each diagnosis can be quite unique. The majority of mutations involved in the etiology of these disorders are missense and nonsense mutations. However, large deletions and duplications undetected by sequencing may be implicated in their pathogenesis, and may explain the apparent lack of genotype-phenotype correlation in a subset of patients. The objective of this study was to search for large pathogenic deletions and/or duplications in the FBN1, TGFβR1, and TGFβR2 genes using multiplex-ligation dependent probe amplification (MLPA) in patients with aortopathy, in whom no mutations in the FBN1, TGFβR1, and TGFβR2 genes were identified by sequencing.


Co-existence of endometriosis with 13 non-gynecological co-morbidities: Mutation analysis by whole exome sequencing.

  • Charoula Matalliotaki‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Endometriosis is an enigmatic condition with an unknown etiology and poorly understood pathogenesis and women with endometriosis represent a high-risk population group for a large category of chronic conditions. The study focused on a 67-year-old woman who presented with a 40-year history of familial endometriosis associated with various non-gynecological co-morbidities, thus representing a unique case from a cohort of 1,000 patients with endometriosis. Her family history included infertile members suffering from endometriosis. Thirteen non-gynecological co-morbidities were documented throughout the years, including five autoimmune diseases (i.e., systemic lupus erythematosus, ankylosing spondylitis, multiple sclerosis, bronchial asthma and Crohn's disease), urinary bladder diverticulum, osteoporosis, multinodular goiter, cardiovascular diseases, gastroesophageal reflux disease, malignant tumor of urinary bladder, Barrett's esophagus and bilateral cataract. In order to understand the potential role of gene mutations in the development of all those co-morbidities, whole exome sequencing was performed and the presence of various disease-associated, potentially causal missense variants, were observed. These findings are in accordance with the previously suggested common underlying etiologic pathway for some, but not all, autoimmune disorders. This unusual case provides novel insights demonstrating that endometriosis can coexist with various chronic autoimmune diseases and other conditions, including non-gynecological malignancies, which possibly share a common genetic cause, a fact that should be taken into consideration seriously by clinicians.


Haplotypes at LBX1 have distinct inheritance patterns with opposite effects in adolescent idiopathic scoliosis.

  • Rakesh Chettier‎ et al.
  • PloS one‎
  • 2015‎

Adolescent idiopathic scoliosis (AIS) is a clinically significant disorder with high heritability that affects 2-4% of the population. Genome-wide association studies have identified LBX1 as a strong susceptibility locus for AIS in Asian and Caucasian populations. Here we further dissect the genetic association with AIS in a Caucasian population. To identify genetic markers associated with AIS we employed a genome-wide association study (GWAS) design comparing 620 female Caucasian patients who developed idiopathic scoliosis during adolescence with 1,287 ethnically matched females who had normal spinal curves by skeletal maturity. The genomic region around LBX1 was imputed and haplotypes investigated for genetic signals under different inheritance models. The strongest signal was identified upstream of LBX1 (rs11190878, P(trend) = 4.18 × 10(-9), OR = 0.63[0.54-0.74]). None of the remaining SNPs pass the genome-wide significance threshold. We found rs11190870, downstream of LBX1 and previously associated with AIS in Asian populations, to be in modest linkage disequilibrium (LD) with rs11190878 (r(2) = 0.40, D' = 0.81). Haplotype analysis shows that rs11190870 and rs11190878 track a single risk factor that resides on the ancestral haplotype and is shared across ethnic groups. We identify six haplotypes at the LBX1 locus including two strongly associated haplotypes; a recessive risk haplotype (TTA, Control(freq) = 0.52, P = 1.25 × 10(-9), OR = 1.56), and a co-dominant protective haplotype (CCG, Control(freq) = 0.28, P = 2.75 × 10(-7), OR = 0.65). Together the association signals from LBX1 explain 1.4% of phenotypic variance. Our results identify two clinically relevant haplotypes in the LBX1-region with opposite effects on AIS risk. The study demonstrates the utility of haplotypes over un-phased SNPs for individualized risk assessment by more strongly delineating individuals at risk for AIS without compromising the effect size.


Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies.

  • Hanyin Cheng‎ et al.
  • American journal of human genetics‎
  • 2018‎

N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.


TAF1 Variants Are Associated with Dysmorphic Features, Intellectual Disability, and Neurological Manifestations.

  • Jason A O'Rawe‎ et al.
  • American journal of human genetics‎
  • 2015‎

We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype. Functional analysis with RNA-seq for one of the families suggested that the phenotype is associated with downregulation of a set of genes notably enriched with genes regulated by E-box proteins. In addition, knockdown and mutant studies of this gene in zebrafish have shown a quantifiable, albeit small, effect on a neuronal phenotype. Our results suggest that mutations in TAF1 play a critical role in the development of this X-linked ID syndrome.


Feasibility of a Traceback Approach for Using Pathology Specimens to Facilitate Genetic Testing in the Genetic Risk Analysis in Ovarian Cancer (GRACE) Study Protocol.

  • Tia L Kauffman‎ et al.
  • Journal of personalized medicine‎
  • 2021‎

Guidelines currently state that genetic testing is clinically indicated for all individuals diagnosed with ovarian cancer. Individuals with a prior diagnosis of ovarian cancer who have not received genetic testing represent missed opportunities to identify individuals with inherited high-risk cancer variants. For deceased individuals, post-mortem genetic testing of pathology specimens allows surviving family members to receive important genetic risk information. The Genetic Risk Assessment in Ovarian Cancer (GRACE) study aims to address this significant healthcare gap using a "traceback testing" approach to identify individuals with a prior diagnosis of ovarian cancer and offer genetic risk information to them and their family members. This study will assess the potential ethical and privacy concerns related to an ovarian cancer traceback testing approach in the context of patients who are deceased, followed by implementation and evaluation of the feasibility of an ovarian cancer traceback testing approach using tumor registries and archived pathology tissue. Descriptive and statistical analyses will assess health system and patient characteristics associated with the availability of pathology tissue and compare the ability to contact and uptake of genetic testing between patients who are living and deceased. The results of this study will inform the implementation of future traceback programs.


SCN8A mutation in a child presenting with seizures and developmental delays.

  • Janet Malcolmson‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2016‎

The SCN8A gene encodes the sodium voltage-gated channel alpha subunit 8. Mutations in this gene have been associated with early infantile epileptic encephalopathy type 13. With the use of whole-exome sequencing, a de novo missense mutation in SCN8A was identified in a 4-yr-old female who initially exhibited symptoms of epilepsy at the age of 5 mo that progressed to a severe condition with very little movement, including being unable to sit or walk on her own.


KBG syndrome involving a single-nucleotide duplication in ANKRD11.

  • Robert Kleyner‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2016‎

KBG syndrome is a rare autosomal dominant genetic condition characterized by neurological involvement and distinct facial, hand, and skeletal features. More than 70 cases have been reported; however, it is likely that KBG syndrome is underdiagnosed because of lack of comprehensive characterization of the heterogeneous phenotypic features. We describe the clinical manifestations in a male currently 13 years of age, who exhibited symptoms including epilepsy, severe developmental delay, distinct facial features, and hand anomalies, without a positive genetic diagnosis. Subsequent exome sequencing identified a novel de novo heterozygous single base pair duplication (c.6015dupA) in ANKRD11, which was validated by Sanger sequencing. This single-nucleotide duplication is predicted to lead to a premature stop codon and loss of function in ANKRD11, thereby implicating it as contributing to the proband's symptoms and yielding a molecular diagnosis of KBG syndrome. Before molecular diagnosis, this syndrome was not recognized in the proband, as several key features of the disorder were mild and were not recognized by clinicians, further supporting the concept of variable expressivity in many disorders. Although a diagnosis of cerebral folate deficiency has also been given, its significance for the proband's condition remains uncertain.


Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency.

  • Alan F Rope‎ et al.
  • American journal of human genetics‎
  • 2011‎

We have identified two families with a previously undescribed lethal X-linked disorder of infancy; the disorder comprises a distinct combination of an aged appearance, craniofacial anomalies, hypotonia, global developmental delays, cryptorchidism, and cardiac arrhythmias. Using X chromosome exon sequencing and a recently developed probabilistic algorithm aimed at discovering disease-causing variants, we identified in one family a c.109T>C (p.Ser37Pro) variant in NAA10, a gene encoding the catalytic subunit of the major human N-terminal acetyltransferase (NAT). A parallel effort on a second unrelated family converged on the same variant. The absence of this variant in controls, the amino acid conservation of this region of the protein, the predicted disruptive change, and the co-occurrence in two unrelated families with the same rare disorder suggest that this is the pathogenic mutation. We confirmed this by demonstrating a significantly impaired biochemical activity of the mutant hNaa10p, and from this we conclude that a reduction in acetylation by hNaa10p causes this disease. Here we provide evidence of a human genetic disorder resulting from direct impairment of N-terminal acetylation, one of the most common protein modifications in humans.


Preconception Carrier Screening by Genome Sequencing: Results from the Clinical Laboratory.

  • Sumit Punj‎ et al.
  • American journal of human genetics‎
  • 2018‎

Advances in sequencing technologies permit the analysis of a larger selection of genes for preconception carrier screening. The study was designed as a sequential carrier screen using genome sequencing to analyze 728 gene-disorder pairs for carrier and medically actionable conditions in 131 women and their partners (n = 71) who were planning a pregnancy. We report here on the clinical laboratory results from this expanded carrier screening program. Variants were filtered and classified using the latest American College of Medical Genetics and Genomics (ACMG) guideline; only pathogenic and likely pathogenic variants were confirmed by orthologous methods before being reported. Novel missense variants were classified as variants of uncertain significance. We reported 304 variants in 202 participants. Twelve carrier couples (12/71 couples tested) were identified for common conditions; eight were carriers for hereditary hemochromatosis. Although both known and novel variants were reported, 48% of all reported variants were missense. For novel splice-site variants, RNA-splicing assays were performed to aid in classification. We reported ten copy-number variants and five variants in non-coding regions. One novel variant was reported in F8, associated with hemophilia A; prenatal testing showed that the male fetus harbored this variant and the neonate suffered a life-threatening hemorrhage which was anticipated and appropriately managed. Moreover, 3% of participants had variants that were medically actionable. Compared with targeted mutation screening, genome sequencing improves the sensitivity of detecting clinically significant variants. While certain novel variant interpretation remains challenging, the ACMG guidelines are useful to classify variants in a healthy population.


Genome-wide association study link novel loci to endometriosis.

  • Hans M Albertsen‎ et al.
  • PloS one‎
  • 2013‎

Endometriosis is a common gynecological condition with complex etiology defined by the presence of endometrial glands and stroma outside the womb. Endometriosis is a common cause of both cyclic and chronic pelvic pain, reduced fertility, and reduced quality-of-life. Diagnosis and treatment of endometriosis is, on average, delayed by 7-10 years from the onset of symptoms. Absence of a timely and non-invasive diagnostic tool is presently the greatest barrier to the identification and treatment of endometriosis. Twin and family studies have documented an increased relative risk in families. To identify genetic factors that contribute to endometriosis we conducted a two-stage genome-wide association study (GWAS) of a European cohort including 2,019 surgically confirmed endometriosis cases and 14,471 controls. Three of the SNPs we identify associated at P<5×10(-8) in our combined analysis belong to two loci: LINC00339-WNT4 on 1p36.12 (rs2235529; P = 8.65×10(-9), OR = 1.29, CI = 1.18-1.40) and RND3-RBM43 on 2q23.3 (rs1519761; P = 4.70×10(-8), OR = 1.20, Cl = 1.13-1.29, and rs6757804; P = 4.05×10(-8), OR = 1.20, Cl = 1.13-1.29). Using an adjusted Bonferoni significance threshold of 4.51×10(-7) we identify two additional loci in our meta-analysis that associate with endometriosis:, RNF144B-ID4 on 6p22.3 (rs6907340; P = 2.19×10(-7), OR = 1.20, Cl = 1.12-1.28), and HNRNPA3P1-LOC100130539 on 10q11.21 (rs10508881; P = 4.08×10(-7), OR = 1.19, Cl = 1.11-1.27). Consistent with previously suggested associations to WNT4 our study implicate a 150 kb region around WNT4 that also include LINC00339 and CDC42. A univariate analysis of documented infertility, age at menarche, and family history did not show allelic association with these SNP markers. Clinical data from patients in our study reveal an average delay in diagnosis of 8.4 years and confirm a strong correlation between endometriosis severity and infertility (n = 1182, P<0.001, OR = 2.18). This GWAS of endometriosis was conducted with high diagnostic certainty in cases, and with stringent handling of population substructure. Our findings broaden the understanding of the genetic factors that play a role in endometriosis.


Endometriosis is associated with rare copy number variants.

  • Rakesh Chettier‎ et al.
  • PloS one‎
  • 2014‎

Endometriosis is a complex gynecological condition that affects 6-10% of women in their reproductive years and is defined by the presence of endometrial glands and stroma outside the uterus. Twin, family, and genome-wide association (GWA) studies have confirmed a genetic role, yet only a small part of the genetic risk can be explained by SNP variation. Copy number variants (CNVs) account for a greater portion of human genetic variation than SNPs and include more recent mutations of large effect. CNVs, likely to be prominent in conditions with decreased reproductive fitness, have not previously been examined as a genetic contributor to endometriosis. Here we employ a high-density genotyping microarray in a genome-wide survey of CNVs in a case-control population that includes 2,126 surgically confirmed endometriosis cases and 17,974 population controls of European ancestry. We apply stringent quality filters to reduce the false positive rate common to many CNV-detection algorithms from 77.7% to 7.3% without noticeable reduction in the true positive rate. We detected no differences in the CNV landscape between cases and controls on the global level which showed an average of 1.92 CNVs per individual with an average size of 142.3 kb. On the local level we identify 22 CNV-regions at the nominal significance threshold (P<0.05), which is greater than the 8.15 CNV-regions expected based on permutation analysis (P<0.001). Three CNV's passed a genome-wide P-value threshold of 9.3 × 10(-4); a deletion at SGCZ on 8p22 (P = 7.3 × 10(-4), OR = 8.5, Cl = 2.3-31.7), a deletion in MALRD1 on 10p12.31 (P = 5.6 × 10(-4), OR = 14.1, Cl = 2.7-90.9), and a deletion at 11q14.1 (P = 5.7 × 10(-4), OR = 33.8, Cl = 3.3-1651). Two SNPs within the 22 CNVRs show significant genotypic association with endometriosis after adjusting for multiple testing; rs758316 in DPP6 on 7q36.2 (P = 0.0045) and rs4837864 in ASTN2 on 9q33.1 (P = 0.0002). Together, the CNV-loci are detected in 6.9% of affected women compared to 2.1% in the general population.


Whole exome sequencing identifies hemizygous deletions in the UGT2B28 and USP17L2 genes in a three‑generation family with endometriosis.

  • Hans M Albertsen‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Endometriosis is an enigmatic condition with an unknown etiology and a poorly understood pathogenesis. It is considered to appear from the interplay of many genetic and environmental factors, affecting up to 10% of women and represents a major cause of pain and infertility. The familial association of endometriosis, as demonstrated through monozygotic twin and family studies suggests a genetic contribution to the disease, with further case‑control and genome‑wide association studies (GWAS) detecting various endometriosis risk factors. In a recent study, we described a unique, three‑generation family of Cretan origin (Greece) with 7 females with surgically confirmed endometriosis (grandmother, 3 daughters and 3 granddaughters). All the affected members of this family displayed a variety of clinical manifestations and complications. In the present study, to further analyze the genetic variants conferring the risk of developing endometriosis, whole exome sequencing (WES) was performed, using the AmpliSeq technology on the Ion Proton platform. An initial analysis of 64 variants that were detected across the 14 genes previously confirmed to be associated with endometriosis, did not identify any deleterious exonic variants in these genes. However, further analysis revealed 2 hemizygous deletions in the grandmother that segregate in several of her affected offspring. The first deletion was found in the UGT2B28 locus, spanning 7 informative sequence variants across at least 14 kb. The second deletion, located in USP17L2, spans 3 informative variants across at least 2 kb. On the whole, the findings of the presents study implicate 2 additional genes in the pathogenesis of endometriosis, apart from those already identified by GWAS.


A dyadic approach to the delineation of diagnostic entities in clinical genomics.

  • Leslie G Biesecker‎ et al.
  • American journal of human genetics‎
  • 2021‎

The delineation of disease entities is complex, yet recent advances in the molecular characterization of diseases provide opportunities to designate diseases in a biologically valid manner. Here, we have formalized an approach to the delineation of Mendelian genetic disorders that encompasses two distinct but inter-related concepts: (1) the gene that is mutated and (2) the phenotypic descriptor, preferably a recognizably distinct phenotype. We assert that only by a combinatorial or dyadic approach taking both of these attributes into account can a unitary, distinct genetic disorder be designated. We propose that all Mendelian disorders should be designated as "GENE-related phenotype descriptor" (e.g., "CFTR-related cystic fibrosis"). This approach to delineating and naming disorders reconciles the complexity of gene-to-phenotype relationships in a simple and clear manner yet communicates the complexity and nuance of these relationships.


ITPR1-associated spinocerebellar ataxia with craniofacial features-additional evidence for germline mosaicism.

  • Robert Kleyner‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2023‎

Inositol 1,4,5-triphosphate receptor type 1 (ITPR1) is an endoplasmic reticulum-bound intracellular inositol triphosphate receptor involved in the regulation of intracellular calcium. Pathogenic variants in ITPR1 are associated with spinocerebellar ataxia (SCA) types 15/16 and 29 and have recently been implicated in a facial microsomia syndrome. In this report, we present a family with three affected individuals found to have a heterozygous missense c.800C > T (predicted p.Thr267Met) who present clinically with a SCA29-like syndrome. All three individuals presented with varying degrees of ataxia, developmental delay, and apparent intellectual disability, as well as craniofacial involvement-an uncommon finding in patients with SCA29. The variant was identified using clinical exome sequencing and validated with Sanger sequencing. It is presumed to be inherited via parental germline mosaicism. We present our findings to provide additional evidence for germline mosaic inheritance of SCA29, as well as to expand the clinical phenotype of the syndrome.


Recommended care and care adherence following a diagnosis of Lynch syndrome: a mixed-methods study.

  • Kathleen F Mittendorf‎ et al.
  • Hereditary cancer in clinical practice‎
  • 2019‎

Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) syndrome. This study assesses trends in diagnosis of LS and adherence to recommended LS-related care in a large integrated healthcare organization (~ 575,000 members).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: