Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Sleep deprivation impairs cAMP signalling in the hippocampus.

  • Christopher G Vecsey‎ et al.
  • Nature‎
  • 2009‎

Millions of people regularly obtain insufficient sleep. Given the effect of sleep deprivation on our lives, understanding the cellular and molecular pathways affected by sleep deprivation is clearly of social and clinical importance. One of the major effects of sleep deprivation on the brain is to produce memory deficits in learning models that are dependent on the hippocampus. Here we have identified a molecular mechanism by which brief sleep deprivation alters hippocampal function. Sleep deprivation selectively impaired 3', 5'-cyclic AMP (cAMP)- and protein kinase A (PKA)-dependent forms of synaptic plasticity in the mouse hippocampus, reduced cAMP signalling, and increased activity and protein levels of phosphodiesterase 4 (PDE4), an enzyme that degrades cAMP. Treatment of mice with phosphodiesterase inhibitors rescued the sleep-deprivation-induced deficits in cAMP signalling, synaptic plasticity and hippocampus-dependent memory. These findings demonstrate that brief sleep deprivation disrupts hippocampal function by interfering with cAMP signalling through increased PDE4 activity. Thus, drugs that enhance cAMP signalling may provide a new therapeutic approach to counteract the cognitive effects of sleep deprivation.


Colocalization of protein kinase A with adenylyl cyclase enhances protein kinase A activity during induction of long-lasting long-term-potentiation.

  • Myungsook Kim‎ et al.
  • PLoS computational biology‎
  • 2011‎

The ability of neurons to differentially respond to specific temporal and spatial input patterns underlies information storage in neural circuits. One means of achieving spatial specificity is to restrict signaling molecules to particular subcellular compartments using anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Disruption of protein kinase A (PKA) anchoring to AKAPs impairs a PKA-dependent form of long term potentiation (LTP) in the hippocampus. To investigate the role of localized PKA signaling in LTP, we developed a stochastic reaction-diffusion model of the signaling pathways leading to PKA activation in CA1 pyramidal neurons. Simulations investigated whether the role of anchoring is to locate kinases near molecules that activate them, or near their target molecules. The results show that anchoring PKA with adenylyl cyclase (which produces cAMP that activates PKA) produces significantly greater PKA activity, and phosphorylation of both inhibitor-1 and AMPA receptor GluR1 subunit on S845, than when PKA is anchored apart from adenylyl cyclase. The spatial microdomain of cAMP was smaller than that of PKA suggesting that anchoring PKA near its source of cAMP is critical because inactivation by phosphodiesterase limits diffusion of cAMP. The prediction that the role of anchoring is to colocalize PKA near adenylyl cyclase was confirmed by experimentally rescuing the deficit in LTP produced by disruption of PKA anchoring using phosphodiesterase inhibitors. Additional experiments confirm the model prediction that disruption of anchoring impairs S845 phosphorylation produced by forskolin-induced synaptic potentiation. Collectively, these results show that locating PKA near adenylyl cyclase is a critical function of anchoring.


Linking spatial gene expression patterns to sex-specific brain structural changes on a mouse model of 16p11.2 hemideletion.

  • Vinod Jangir Kumar‎ et al.
  • Translational psychiatry‎
  • 2018‎

Neurodevelopmental disorders, such as ASD and ADHD, affect males about three to four times more often than females. 16p11.2 hemideletion is a copy number variation that is highly associated with neurodevelopmental disorders. Previous work from our lab has shown that a mouse model of 16p11.2 hemideletion (del/+) exhibits male-specific behavioral phenotypes. We, therefore, aimed to investigate with magnetic resonance imaging (MRI), whether del/+ animals also exhibited a sex-specific neuroanatomical endophenotype. Using the Allen Mouse Brain Atlas, we analyzed the expression patterns of the 27 genes within the 16p11.2 region to identify which gene expression patterns spatially overlapped with brain structural changes. MRI was performed ex vivo and the resulting images were analyzed using Voxel-based morphometry for T1-weighted sequences and tract-based spatial statistics for diffusion-weighted images. In a subsequent step, all available in situ hybridization (ISH) maps of the genes involved in the 16p11.2 hemideletion were aligned to Waxholm space and clusters obtained by sex-specific group comparisons were analyzed to determine which gene(s) showed the highest expression in these regions. We found pronounced sex-specific changes in male animals with increased fractional anisotropy in medial fiber tracts, especially in those proximate to the striatum. Moreover, we were able to identify gene expression patterns spatially overlapping with male-specific structural changes that were associated with neurite outgrowth and the MAPK pathway. Of note, previous molecular studies have found convergent changes that point to a sex-specific dysregulation of MAPK signaling. This convergent evidence supports the idea that ISH maps can be used to meaningfully analyze imaging data sets.


Sleep deprivation reduces the density of individual spine subtypes in a branch-specific fashion in CA1 neurons.

  • Youri G Bolsius‎ et al.
  • Journal of sleep research‎
  • 2022‎

Sleep deprivation has a negative impact on hippocampus-dependent memory, which is thought to depend on cellular plasticity. We previously found that 5 h of sleep deprivation robustly decreases dendritic spine density in the CA1 area of the hippocampus in adult male mice. However, recent work by others suggests that sleep deprivation increases the density of certain spine types on specific dendritic branches. Based on these recent findings and our previous work, we conducted a more in-depth analysis of different spine types on branches 1, 2 and 5 of both apical and basal dendrites to assess whether 5 h of sleep deprivation may have previously unrecognized spine-type and branch-specific effects. This analysis shows no spine-type specific changes on branch 1 and 2 of apical dendrites after sleep deprivation. In contrast, sleep deprivation decreases the number of mushroom and branched spines on branch 5. Likewise, sleep deprivation reduces thin, mushroom and filopodia spine density on branch 5 of the basal dendrites, without affecting spines on branch 1 and 2. Our findings indicate that sleep deprivation leads to local branch-specific reduction in the density of individual spine types, and that local effects might not reflect the overall impact of sleep deprivation on CA1 structural plasticity. Moreover, our analysis underscores that focusing on a subset of dendritic branches may lead to potential misinterpretation of the overall impact of, in this case, sleep deprivation on structural plasticity.


A brief period of sleep deprivation leads to subtle changes in mouse gut microbiota.

  • Sahar El Aidy‎ et al.
  • Journal of sleep research‎
  • 2020‎

Not getting enough sleep is a common problem in our society and contributes to numerous health problems, including high blood pressure, diabetes and obesity. Related to these observations, a wealth of studies has underscored the negative impact of both acute and chronic sleep deprivation on cognitive function. More recently it has become apparent that the gut microbiota composition can be rapidly altered, modulates brain function and is affected by the aforementioned health problems. As such, changes in the microbiota composition may contribute to the behavioural and physiological phenotypes associated with sleep deprivation. It is unclear, however, whether a brief period of sleep deprivation can also negatively impact the gut microbiota. Here, we examined the impact of 5 hr of sleep deprivation on gut microbiota composition of male C57Bl6/J mice. Despite the fact that the overall microbial composition did not change between the control- and sleep-deprived groups, the relative abundance of the Clostridiaceae and Lachnospiraceae were slightly altered in sleep-deprived animals compared to controls. Together, these data suggest that depriving mice of sleep for 5 hr leads to subtle changes in the gut microbiota composition.


Sleep deprivation-induced impairment of memory consolidation is not mediated by glucocorticoid stress hormones.

  • Frank Raven‎ et al.
  • Journal of sleep research‎
  • 2020‎

The general consensus is that sleep promotes neuronal recovery and plasticity, whereas sleep deprivation (SD) impairs brain function, including cognitive processes. Indeed, a wealth of data has shown a negative impact of SD on learning and memory processes, particularly those that involve the hippocampus. The mechanisms underlying these negative effects of sleep loss are only partly understood, but a reoccurring question is whether they are in part caused by stress hormones that may be released during SD. The purpose of the present study is therefore to examine the role of glucocorticoid stress hormones in SD-induced memory impairment. Male C57BL/6J mice were trained in an object-location memory paradigm, followed by 6 hr of SD by mild stimulation. At the beginning of the SD mice were injected with the corticosterone synthesis inhibitor metyrapone. Memory was tested 24 hr after training. Blood samples taken in a separate group of mice showed that SD resulted in a mild but significant increase in plasma corticosterone levels, which was prevented by metyrapone. However, the SD-induced impairment in object-location memory was not prevented by metyrapone treatment. This indicates that glucocorticoids play no role in causing the memory impairments seen after a short period of SD.


Elucidating the role of protein synthesis in hippocampus-dependent memory consolidation across the day and night.

  • Frank Raven‎ et al.
  • The European journal of neuroscience‎
  • 2021‎

It is widely acknowledged that de novo protein synthesis is crucial for the formation and consolidation of long-term memories. While the basal activity of many signaling cascades that modulate protein synthesis fluctuates in a circadian fashion, it is unclear whether the temporal dynamics of protein synthesis-dependent memory consolidation vary depending on the time of day. More specifically, it is unclear whether protein synthesis inhibition affects hippocampus-dependent memory consolidation in rodents differentially across the day (i.e., the inactive phase with an abundance of sleep) and night (i.e., the active phase with little sleep). To address this question, male and female C57Bl6/J mice were trained in a contextual fear conditioning task at the beginning or the end of the light phase. Animals received a single systemic injection with the protein synthesis inhibitor anisomycin or vehicle directly, 4, 8 hr, or 11.5 hr following training, and memory was assessed after 24 hr. Here, we show that protein synthesis inhibition impaired the consolidation of context-fear memories selectively when the protein synthesis inhibitor was administered at the first three time points, irrespective of timing of training. Even though the basal activity of signaling pathways regulating de novo protein synthesis may fluctuate across the 24-hr cycle, these results suggest that the temporal dynamics of protein synthesis-dependent memory consolidation are similar for day-time and night-time learning.


A brief period of sleep deprivation causes spine loss in the dentate gyrus of mice.

  • Frank Raven‎ et al.
  • Neurobiology of learning and memory‎
  • 2019‎

Sleep and sleep loss have a profound impact on hippocampal function, leading to memory impairments. Modifications in the strength of synaptic connections directly influences neuronal communication, which is vital for normal brain function, as well as the processing and storage of information. In a recently published study, we found that as little as five hours of sleep deprivation impaired hippocampus-dependent memory consolidation, which was accompanied by a reduction in dendritic spine numbers in hippocampal area CA1. Surprisingly, loss of sleep did not alter the spine density of CA3 neurons. Although sleep deprivation has been reported to affect the function of the dentate gyrus, it is unclear whether a brief period of sleep deprivation impacts spine density in this region. Here, we investigated the impact of a brief period of sleep deprivation on dendritic structure in the dentate gyrus of the dorsal hippocampus. We found that five hours of sleep loss reduces spine density in the dentate gyrus with a prominent effect on branched spines. Interestingly, the inferior blade of the dentate gyrus seems to be more vulnerable in terms of spine loss than the superior blade. This decrease in spine density predominantly in the inferior blade of the dentate gyrus may contribute to the memory deficits observed after sleep loss, as structural reorganization of synaptic networks in this subregion is fundamental for cognitive processes.


A brief period of sleep deprivation negatively impacts the acquisition, consolidation, and retrieval of object-location memories.

  • Pim R A Heckman‎ et al.
  • Neurobiology of learning and memory‎
  • 2020‎

Memory is a cognitive concept and refers to the storage of information over a longer time period. It exists of a series of complementary processes; acquisition, consolidation, and retrieval. Each of these processes has its own partly unique neurobiological signature. Sleep deprivation is known to impair hippocampus-dependent long-term memories. Many studies have used extended periods of wakefulness, affecting all three memory processes, thereby making it unable to determine how each of the processes is affected by sleep loss, separately. Others have extensively examined the effects on memory consolidation, showing the detrimental effect of sleep deprivation during the consolidation process on memory formation. Few studies have investigated how memory acquisition and its retrieval are affected by sleep loss. In the present study, we therefore assessed in mice how sleep deprivation negatively impacts memory acquisition, consolidation, and retrieval, in the Object Location Memory task. Mice were sleep deprived for six hours at the beginning of the light phase using the gentle handling method, 1) directly preceding the learning trial (acquisition), 2) immediately after the learning trial (consolidation), or 3) directly preceding the test trial (retrieval). Memory was assessed at either a 24-h or 1-h interval. Using this approach, we show for the first time that six hours of sleep deprivation attenuates the acquisition, consolidation, and retrieval of object-location memories in mice.


Molecular fingerprints in the hippocampus of alcohol seeking during withdrawal.

  • Roberto Pagano‎ et al.
  • Research square‎
  • 2023‎

Alcohol use disorder (AUD) is characterized by pathological motivation to consume alcohol and cognitive inflexibility, leading to excessive alcohol seeking and use. Due to limited understanding of the molecular basis of the disease, there are few pharmacological interventions available to combat AUD. In this study, we aimed to investigate the molecular correlates of impaired extinction of alcohol seeking during alcohol withdrawal using a mouse model of AUD implemented in the automated IntelliCage social system. This model enabled us to distinguish between animals exhibiting AUD-prone and AUD-resistant phenotypes, based on the presence of ≥ 2 or < 2 criteria of AUD, respectively. We utilized new generation RNA sequencing to identify genes that were differentially expressed in the hippocampus and amygdala of mice meeting ≥ 2 or < 2 criteria, as these brain regions are implicated in alcohol motivation, seeking, consumption and the cognitive inflexibility characteristic of AUD. To complement the sequencing studies, we conducted ex vivo electrophysiology experiments. Our findings revealed significant dysregulation of the hippocampal genes associated with the actin cytoskeleton and synaptic function, including actin binding molecule cofilin, during alcohol withdrawal in mice meeting ≥ 2 criteria compared to those meeting < 2 criteria. Moreover, this dysregulation was accompanied by impaired synaptic transmission in the molecular layer of the hippocampal dentate gyrus (ML-DG). Additionally, we demonstrated that overexpression of cofilin in the polymorphic layer of the hippocampal dentate gyrus (PoDG) inhibited ML-DG synapses, increased motivation to seek alcohol, impaired extinction of alcohol seeking and increased correlation between AUD behaviors, resembling the phenotype observed in mice meeting ≥ 2 criteria. Overall, our study uncovers a novel mechanism linking increased hippocampal cofilin expression with the AUD phenotype.


Circadian time-place learning in mice depends on Cry genes.

  • Eddy A Van der Zee‎ et al.
  • Current biology : CB‎
  • 2008‎

Endogenous biological clocks allow organisms to anticipate daily environmental cycles. The ability to achieve time-place associations is key to the survival and reproductive success of animals. The ability to link the location of a stimulus (usually food) with time of day has been coined time-place learning, but its circadian nature was only shown in honeybees and birds. So far, an unambiguous circadian time-place-learning paradigm for mammals is lacking. We studied whether expression of the clock gene Cryptochrome (Cry), crucial for circadian timing, is a prerequisite for time-place learning. Time-place learning in mice was achieved by developing a novel paradigm in which food reward at specific times of day was counterbalanced by the penalty of receiving a mild footshock. Mice lacking the core clock genes Cry1 and Cry2 (Cry double knockout mice; Cry1(-/-)Cry2(-/-)) learned to avoid unpleasant sensory experiences (mild footshock) and could locate a food reward in a spatial learning task (place preference). These mice failed, however, to learn time-place associations. This specific learning and memory deficit shows that a Cry-gene dependent circadian timing system underlies the utilization of time of day information. These results reveal a new functional role of the mammalian circadian timing system.


Mutation of neuron-specific chromatin remodeling subunit BAF53b: rescue of plasticity and memory by manipulating actin remodeling.

  • Annie Vogel Ciernia‎ et al.
  • Learning & memory (Cold Spring Harbor, N.Y.)‎
  • 2017‎

Recent human exome-sequencing studies have implicated polymorphic Brg1-associated factor (BAF) complexes (mammalian SWI/SNF chromatin remodeling complexes) in several intellectual disabilities and cognitive disorders, including autism. However, it remains unclear how mutations in BAF complexes result in impaired cognitive function. Post-mitotic neurons express a neuron-specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Subdomain 2 of BAF53b is essential for the differentiation of neuronal precursor cells into neurons. We generated transgenic mice lacking subdomain 2 of Baf53b (BAF53bΔSB2). Long-term synaptic potentiation (LTP) and long-term memory, both of which are associated with phosphorylation of the actin severing protein cofilin, were assessed in these animals. A phosphorylation mimic of cofilin was stereotaxically delivered into the hippocampus of BAF53bΔSB2 mice in an effort to rescue LTP and memory. BAF53bΔSB2 mutant mice show impairments in phosphorylation of synaptic cofilin, LTP, and memory. Both the synaptic plasticity and memory deficits are rescued by overexpression of a phosphorylation mimetic of cofilin. Baseline physiology and behavior were not affected by the mutation or the experimental treatment. This study suggests a potential link between nBAF function, actin cytoskeletal remodeling at the dendritic spine, and memory formation. This work shows that a targeted manipulation of synaptic function can rescue adult plasticity and memory deficits caused by manipulations of nBAF, and thereby provides potential novel avenues for therapeutic development for multiple intellectual disability disorders.


Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1.

  • Robbert Havekes‎ et al.
  • eLife‎
  • 2016‎

Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density.


Learning induces the translin/trax RNase complex to express activin receptors for persistent memory.

  • Alan Jung Park‎ et al.
  • eLife‎
  • 2017‎

Long-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at activated synapses. We find that mice lacking translin/trax display defects in synaptic tagging, which requires protein synthesis at activated synapses, and long-term memory. Hippocampal samples harvested from these mice following learning show increases in several disease-related microRNAs targeting the activin A receptor type 1C (ACVR1C), a component of the transforming growth factor-β receptor superfamily. Furthermore, the absence of translin/trax abolishes synaptic upregulation of ACVR1C protein after learning. Finally, synaptic tagging and long-term memory deficits in mice lacking translin/trax are mimicked by ACVR1C inhibition. Thus, we define a new memory mechanism by which learning reverses microRNA-mediated silencing of the novel plasticity protein ACVR1C via translin/trax.


Molecular fingerprints in the hippocampus of alcohol seeking during withdrawal.

  • Roberto Pagano‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Alcohol use disorder (AUD) is characterized by excessive alcohol seeking and use. Here, we investigated the molecular correlates of impaired extinction of alcohol seeking using a multidimentional mouse model of AUD. We distinguished AUD-prone and AUD-resistant mice, based on the presence of ≥ 2 or < 2 criteria of AUD and utilized RNA sequencing to identify genes that were differentially expressed in the hippocampus and amygdala of mice meeting ≥ 2 or < 2 criteria, as these brain regions are implicated in alcohol motivation, seeking, consumption and the cognitive inflexibility characteristic of AUD. Our findings revealed dysregulation of the genes associated with the actin cytoskeleton, including actin binding molecule cofilin, and impaired synaptic transmission in the hippocampi of mice meeting ≥ 2 criteria. Overexpression of cofilin in the polymorphic layer of the dentate gyrus (PoDG) inhibited ML-DG synapses, increased motivation to seek alcohol and impaired extinction of alcohol seeking, resembling the phenotype observed in mice meeting ≥ 2 criteria. Overall, our study uncovers a novel mechanism linking increased hippocampal cofilin expression with the AUD phenotype.


Cofilin overactivation improves hippocampus-dependent short-term memory.

  • Frank Raven‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2023‎

Many living organisms of the animal kingdom have the fundamental ability to form and retrieve memories. Most information is initially stored as short-term memory, which is then converted to a more stable long-term memory through a process called memory consolidation. At the neuronal level, synaptic plasticity is crucial for memory storage. It includes the formation of new spines, as well as the modification of existing spines, thereby tuning and shaping synaptic efficacy. Cofilin critically contributes to memory processes as upon activation, it regulates the shape of dendritic spines by targeting actin filaments. We previously found that prolonged activation of cofilin in hippocampal neurons attenuated the formation of long-term object-location memories. Because the modification of spine shape and structure is also essential for short-term memory formation, we determined whether overactivation of hippocampal cofilin also influences the formation of short-term memories. To this end, mice were either injected with an adeno-associated virus expressing catalytically active cofilin, or an eGFP control, in the hippocampus. We show for the first time that cofilin overactivation improves short-term memory formation in the object-location memory task, without affecting anxiety-like behavior. Surprisingly, we found no effect of cofilin overactivation on AMPA receptor expression levels. Altogether, while cofilin overactivation might negatively impact the formation of long-lasting memories, it may benefit short-term plasticity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: