2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Prokineticin 1 mediates fetal-maternal dialogue regulating endometrial leukemia inhibitory factor.

  • Jemma Evans‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2009‎

Implantation requires communication between a receptive endometrium and a healthy blastocyst. This maternal-embryonic crosstalk involves local mediators within the uterine microenvironment. We demonstrate that a secreted protein, prokineticin 1 (PROK1), is expressed in the receptive endometrium and during early pregnancy. PROK1 induces expression of leukemia inhibitory factor (LIF) in endometrial epithelial cells and first trimester decidua via a Gq-Ca(2+)-cSrc-mitogen-activated protein kinase kinase-mediated pathway. We show that human embryonic chorionic gonadotropin (hCG) induces sequential mRNA expression of PROK1 and LIF in an in vivo baboon model, in human endometrial epithelial cells, and in first-trimester decidua. We have used micro RNA constructs targeted to PROK1 to demonstrate that hCG-mediated LIF expression in the endometrium is dependent on prior induction of PROK1. Dual immunohistochemical analysis colocalized expression of the luteinizing hormone/chorionic gonadotropin receptor, PROK1, PROKR1, and LIF to the glandular epithelial cells of the first trimester decidual tissue. PROK1 enhances adhesion of trophoblast cells to fibronectin and laminin matrices, which are mediated predominantly via LIF induction. These data describe a novel signaling pathway mediating maternal-embryonic crosstalk, in which embryonic hCG via endometrial PROK1 may play a pivotal role in enhancing receptivity and maintaining early pregnancy.


Prokineticin 1 induces inflammatory response in human myometrium: a potential role in initiating term and preterm parturition.

  • Marta R Gorowiec‎ et al.
  • The American journal of pathology‎
  • 2011‎

The infiltration of human myometrium and cervix with leukocytes and the formation of a pro-inflammatory environment within the uterus have been associated with the initiation of both term and preterm parturition. The mechanism regulating the onset of this pro-inflammatory cascade is not fully elucidated. We demonstrate that prokineticin 1 (PROK1) is up-regulated in human myometrium and placenta during labor. The expression of PROK1 receptor remains unchanged during labor and is abundantly expressed in the myometrium. Gene array analysis identified 65 genes up-regulated by PROK1 in human myometrium, mainly cytokines and chemokines, including IL-1β, chemokine C-C motif ligand 3, and colony-stimulating factor 3. In addition, we demonstrate that PROK1 increases the expression of chemokine C-C motif ligand 20, IL-6, IL-8, prostaglandin synthase 2, and prostaglandin E(2) and F(2α) secretion. The treatment of myometrial explants with 100 ng/mL of lipopolysaccharide up-regulates the expression of PROK1, PROK1 receptor, and inflammatory mediators. The infection of myometrial explants with lentiviral microRNA targeting PROK1, preceding treatment with lipopolysaccharide, reduces the expression of inflammatory genes. We propose that PROK1 is a novel inflammatory mediator that can contribute to the onset of human parturition at term and partially mediate premature onset of inflammatory pathways during bacterial infection.


Decidual neutrophil infiltration is not required for preterm birth in a mouse model of infection-induced preterm labor.

  • Sara F Rinaldi‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2014‎

Parturition is associated with a leukocyte influx into the intrauterine tissues; however, the exact role these leukocytes play in the onset of labor remains unclear. Neutrophil infiltration of the uteroplacental tissues has been particularly associated with infection-associated preterm labor (PTL) in both women and mouse models. In this study, we investigated the role of neutrophils in a mouse model of infection-induced PTL. Intrauterine administration of LPS on day 17 of gestation resulted in a 7-fold increase in the number of decidual neutrophils compared with control mice receiving PBS (p < 0.01; n = 8-11). We hypothesized that neutrophil influx is necessary for PTL and that neutrophil depletion would abolish preterm birth. To test this hypothesis, mice were depleted of neutrophils by treatment with anti-Gr-1, anti-Ly-6G, or the appropriate IgG control Ab on day 16 of gestation prior to LPS on day 17 (n = 6-7). Successful neutrophil depletion was confirmed by flow cytometry and immunohistochemistry. Neutrophil depletion with Gr-1 resulted in reduced uterine and placental Il-1β expression (p < 0.05). Neutrophil depletion with Ly-6G reduced uterine Il-1β and Tnf-α expression (p < 0.05). However, neutrophil depletion with either Ab did not delay LPS-induced preterm birth. Collectively, these data show that decidual neutrophil infiltration is not essential for the induction of infection-induced PTL in the mouse, but that neutrophils contribute to the LPS-induced inflammatory response of the uteroplacental tissues.


Prostaglandin F(2alpha)-F-prostanoid receptor regulates CXCL8 expression in endometrial adenocarcinoma cells via the calcium-calcineurin-NFAT pathway.

  • Kurt J Sales‎ et al.
  • Biochimica et biophysica acta‎
  • 2009‎

Pro-inflammatory mediators, like prostaglandin (PG) and chemokines, promote tumourigenesis by enhancing cell proliferation, migration of immune cells and recruitment of blood vessels. Recently we showed elevated expression of the chemokine (C-X-C motif) receptor 2 (CXCR2) in endometrial adenocarcinomas localized to neutrophils and neoplastic epithelial and vascular cells. Furthermore we found that PGF(2alpha)-F-prostanoid (FP) receptor regulates the expression of the CXCR2 ligand CXCL1, to promote neutrophil chemotaxis in endometrial adenocarcinomas. In the present study we identified another CXCR2 ligand, CXCL8 as a target for PGF(2alpha)-FP receptor signalling which enhances epithelial cell proliferation in endometrial adenocarcinoma cells in vitro and in nude mice in vivo. We found that PGF(2alpha)-FP receptor interaction induces CXCL8 expression in endometrial adenocarcinoma cells via the protein kinase C-calcium-calcineurin-NFAT signaling pathway. Promoter analysis revealed that CXCL8 transcriptional activation by PGF(2alpha) signaling is mediated by cooperative interactions between the AP1 and NFAT binding sites. Furthermore, PGF(2alpha) via the FP receptor induced the expression of the regulator of calcineurin 1 isoform 4 (RCAN1-4) via the calcineurin/NFAT pathway in a reciprocal manner to CXCL8. Using an adenovirus to overexpress RCAN1-4, we found that RCAN1-4 is a negative regulator of CXCL8 expression in endometrial adenocarcinoma cells. Taken together our data have elucidated the molecular and cellular mechanism whereby PGF(2alpha) regulates CXCL8 expression via the FP receptor in endometrial adenocarcinomas and have highlighted RCAN1-4 as a negative regulator of CXCL8 expression which may be exploited therapeutically to inhibit CXCL8-mediated tumour development.


Hypoxia and prostaglandin E receptor 4 signalling pathways synergise to promote endometrial adenocarcinoma cell proliferation and tumour growth.

  • Rob D Catalano‎ et al.
  • PloS one‎
  • 2011‎

The prostaglandin endoperoxide synthase (PTGS) pathway is a potent driver of tumour development in humans by enhancing the biosynthesis and signalling of prostaglandin (PG) E(2). PTGS2 expression and PGE(2) biosynthesis is elevated in endometrial adenocarcinoma, however the mechanism whereby PTGS and PGE(2) regulate endometrial tumour growth is unknown. Here we investigated (a) the expression profile of the PGE synthase enzymes (PTGES, PTGES-2, PTGES-3) and PGE receptors (PTGER1-4) in endometrial adenocarcinomas compared with normal endometrium and (b) the role of PTGER4 in endometrial tumorigenesis in vivo. We found elevated expression of PTGES2 and PTGER4 and suppression of PTGER1 and PTGER3 in endometrial adenocarcinomas compared with normal endometrium. Using WT Ishikawa endometrial adenocarcinoma cells and Ishikawa cells stably transfected with the full length PTGER4 cDNA (PTGER4 cells) xenografted in the dorsal flanks of nude mice, we show that PTGER4 rapidly and significantly enhances tumour growth rate. Coincident with enhanced PTGER4-mediated tumour growth we found elevated expression of PTGS2 in PTGER4 xenografts compared with WT xenografts. Furthermore we found that the augmented growth rate of the PTGER4 xenografts was not due to enhanced angiogenesis, but regulated by an increased proliferation index and hypoxia. In vitro, we found that PGE(2) and hypoxia independently induce expression of PTGER4 indicating two independent pathways regulating prostanoid receptor expression. Finally we have shown that PGE(2) and hypoxia synergise to promote cellular proliferation of endometrial adenocarcinoma cells.


Prokineticin 1 induces Dickkopf 1 expression and regulates cell proliferation and decidualization in the human endometrium.

  • Linsay J Macdonald‎ et al.
  • Molecular human reproduction‎
  • 2011‎

Prokineticin 1 (PROK1) signalling via prokineticin receptor 1 (PROKR1) regulates the expression of several genes with important roles in endometrial receptivity and implantation. This study investigated PROK1 regulation of Dickkopf 1 (DKK1) expression, a negative regulator of canonical Wnt signalling, and its function in the non-pregnant endometrium and first trimester decidua. DKK1 mRNA expression is elevated during the mid-secretory phase of the menstrual cycle and expression increases further in first trimester decidua. DKK1 protein expression is localized to glandular epithelial and stromal cells during the proliferative, early- and mid-secretory phases, whereas expression is confined to the stroma in the late-secretory phase and first trimester decidua. PROK1 induces the expression of DKK1 in endometrial epithelial cells stably expressing PROKR1 and in first trimester decidua explants, via a Gq-calcium-calcineurin-nuclear factor of activated T-cells-mediated pathway. Endometrial epithelial cell proliferation is negatively regulated by PROK1-PROKR1 signalling. We demonstrate that this effect on cell proliferation occurs via DKK1 expression, as siRNA targeted against DKK1 reduces the PROK1-induced decrease in proliferation. Furthermore, decidualization of primary human endometrial stromal cells with progesterone and cyclic adenosine monophosphate is inhibited by miRNA knock down of PROK1 or DKK1. These data demonstrate important roles for PROK1 and DKK1 during endometrial receptivity and early pregnancy, which include regulation of endometrial cell proliferation and decidualization.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: