Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 40 papers

Impact of Individual Traits, Saturated Fat, and Protein Source on the Gut Microbiome.

  • Jennifer M Lang‎ et al.
  • mBio‎
  • 2018‎

Interindividual variation in the composition of the human gut microbiome was examined in relation to demographic and anthropometric traits, and to changes in dietary saturated fat intake and protein source. One hundred nine healthy men and women aged 21 to 65, with BMIs of 18 to 36, were randomized, after a two-week baseline diet, to high (15% total energy [E])- or low (7%E)-saturated-fat groups and randomly received three diets (four weeks each) in which the protein source (25%E) was mainly red meat (beef, pork) (12%E), white meat (chicken, turkey) (12%E), and nonmeat sources (nuts, beans, soy) (16%E). Taxonomic characterization using 16S ribosomal DNA was performed on fecal samples collected at each diet completion. Interindividual differences in age, body fat (%), height, ethnicity, sex, and alpha diversity (Shannon) were all significant factors, and most samples clustered by participant in the PCoA ordination. The dietary interventions did not significantly alter the overall microbiome community in ordination space, but there was an effect on taxon abundance levels. Saturated fat had a greater effect than protein source on taxon differential abundance, but protein source had a significant effect once the fat influence was removed. Higher alpha diversity predicted lower beta diversity between the experimental and baseline diets, indicating greater resistance to change in people with higher microbiome diversity. Our results suggest that interindividual differences outweighed the influence of these specific dietary changes on the microbiome and that moderate changes in saturated fat level and protein source correspond to modest changes in the microbiome.IMPORTANCE The microbiome has proven to influence health and disease, but how combinations of external factors affect the microbiome is relatively unknown. Diet can cause changes, but this is usually achieved by altering macronutrient ratios and has not focused on dietary protein source or saturated fat intake levels. In addition, each individual's unique microbiome profile can be an important factor during studies, and it has even been shown to affect therapeutic outcomes. We show here that the effects of individual differences outweighed the effect of experimental diets and that protein source is less influential than saturated fat level. This suggests that fat and protein composition, separate from macronutrient ratio and carbohydrate composition, is an important consideration in dietary studies.


A Strategy for Discovery of Endocrine Interactions with Application to Whole-Body Metabolism.

  • Marcus M Seldin‎ et al.
  • Cell metabolism‎
  • 2018‎

Inter-tissue communication via secreted proteins has been established as a vital mechanism for proper physiologic homeostasis. Here, we report a bioinformatics framework using a mouse reference population, the Hybrid Mouse Diversity Panel (HMDP), which integrates global multi-tissue expression data and publicly available resources to identify and functionally annotate novel circuits of tissue-tissue communication. We validate this method by showing that we can identify known as well as novel endocrine factors responsible for communication between tissues. We further show the utility of this approach by identification and mechanistic characterization of two new endocrine factors. Adipose-derived Lipocalin-5 is shown to enhance skeletal muscle mitochondrial function, and liver-secreted Notum promotes browning of white adipose tissue, also known as "beiging." We demonstrate the general applicability of the method by providing in vivo evidence for three additional novel molecules mediating tissue-tissue interactions.


Replication of linkage at chromosome 20p13 and identification of suggestive sex-differential risk loci for autism spectrum disorder.

  • Donna M Werling‎ et al.
  • Molecular autism‎
  • 2014‎

Autism spectrum disorders (ASDs) are male-biased and genetically heterogeneous. While sequencing of sporadic cases has identified de novo risk variants, the heritable genetic contribution and mechanisms driving the male bias are less understood. Here, we aimed to identify familial and sex-differential risk loci in the largest available, uniformly ascertained, densely genotyped sample of multiplex ASD families from the Autism Genetics Resource Exchange (AGRE), and to compare results with earlier findings from AGRE.


Family-specific aggregation of lipid GWAS variants confers the susceptibility to familial hypercholesterolemia in a large Austrian family.

  • Elina Nikkola‎ et al.
  • Atherosclerosis‎
  • 2017‎

Hypercholesterolemia confers susceptibility to cardiovascular disease (CVD). Both serum total cholesterol (TC) and LDL-cholesterol (LDL-C) exhibit a strong genetic component (heritability estimates 0.41-0.50). However, a large part of this heritability cannot be explained by the variants identified in recent extensive genome-wide association studies (GWAS) on lipids. Our aim was to find genetic causes leading to high LDL-C levels and ultimately CVD in a large Austrian family presenting with what appears to be autosomal dominant inheritance for familial hypercholesterolemia (FH).


MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus.

  • Yun Deng‎ et al.
  • PLoS genetics‎
  • 2013‎

We previously reported that the G allele of rs3853839 at 3'untranslated region (UTR) of Toll-like receptor 7 (TLR7) was associated with elevated transcript expression and increased risk for systemic lupus erythematosus (SLE) in 9,274 Eastern Asians [P = 6.5×10(-10), odds ratio (OR) (95%CI) = 1.27 (1.17-1.36)]. Here, we conducted trans-ancestral fine-mapping in 13,339 subjects including European Americans, African Americans, and Amerindian/Hispanics and confirmed rs3853839 as the only variant within the TLR7-TLR8 region exhibiting consistent and independent association with SLE (Pmeta = 7.5×10(-11), OR = 1.24 [1.18-1.34]). The risk G allele was associated with significantly increased levels of TLR7 mRNA and protein in peripheral blood mononuclear cells (PBMCs) and elevated luciferase activity of reporter gene in transfected cells. TLR7 3'UTR sequence bearing the non-risk C allele of rs3853839 matches a predicted binding site of microRNA-3148 (miR-3148), suggesting that this microRNA may regulate TLR7 expression. Indeed, miR-3148 levels were inversely correlated with TLR7 transcript levels in PBMCs from SLE patients and controls (R(2) = 0.255, P = 0.001). Overexpression of miR-3148 in HEK-293 cells led to significant dose-dependent decrease in luciferase activity for construct driven by TLR7 3'UTR segment bearing the C allele (P = 0.0003). Compared with the G-allele construct, the C-allele construct showed greater than two-fold reduction of luciferase activity in the presence of miR-3148. Reduced modulation by miR-3148 conferred slower degradation of the risk G-allele containing TLR7 transcripts, resulting in elevated levels of gene products. These data establish rs3853839 of TLR7 as a shared risk variant of SLE in 22,613 subjects of Asian, EA, AA, and Amerindian/Hispanic ancestries (Pmeta  = 2.0×10(-19), OR = 1.25 [1.20-1.32]), which confers allelic effect on transcript turnover via differential binding to the epigenetic factor miR-3148.


A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder.

  • Jillian P Casey‎ et al.
  • Human genetics‎
  • 2012‎

Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data.


DMD genotype correlations from the Duchenne Registry: Endogenous exon skipping is a factor in prolonged ambulation for individuals with a defined mutation subtype.

  • Richard T Wang‎ et al.
  • Human mutation‎
  • 2018‎

Antisense oligonucleotide (AON)-mediated exon skipping is an emerging therapeutic for individuals with Duchenne muscular dystrophy (DMD). Skipping of exons adjacent to common exon deletions in DMD using AONs can produce in-frame transcripts and functional protein. Targeted skipping of DMD exons 8, 44, 45, 50, 51, 52, 53, and 55 is predicted to benefit 47% of affected individuals. We observed a correlation between mutation subgroups and age at loss of ambulation in the Duchenne Registry, a large database of phenotypic and genetic data for DMD (N = 765). Males amenable to exon 44 (N = 74) and exon 8 skipping (N = 18) showed prolonged ambulation compared to other exon skip groups and nonsense mutations (P = 0.035 and P < 0.01, respectively). In particular, exon 45 deletions were associated with prolonged age at loss of ambulation relative to the rest of the exon 44 skip amenable cohort and other DMD mutations. Exon 3-7 deletions also showed prolonged ambulation relative to all other exon 8 skippable mutations. Cultured myotubes from DMD patients with deletions of exons 3-7 or exon 45 showed higher endogenous skipping than other mutations, providing a potential biological rationale for our observations. These results highlight the utility of aggregating phenotypic and genotypic data for rare pediatric diseases to reveal progression differences, identify potentially confounding factors, and probe molecular mechanisms that may affect disease severity.


Repurposing Dantrolene for Long-Term Combination Therapy to Potentiate Antisense-Mediated DMD Exon Skipping in the mdx Mouse.

  • Derek W Wang‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2018‎

Duchenne muscular dystrophy (DMD) is caused by mutations in DMD, resulting in loss of dystrophin, which is essential to muscle health. DMD "exon skipping" uses anti-sense oligo-nucleotides (AONs) to force specific exon exclusion during mRNA processing to restore reading frame and rescue of partially functional dystrophin protein. Although exon-skipping drugs in humans show promise, levels of rescued dystrophin protein remain suboptimal. We previously identified dantrolene as a skip booster when combined with AON in human DMD cultures and short-term mdx dystrophic mouse studies. Here, we assess the effect of dantrolene/AON combination on DMD exon-23 skipping over long-term mdx treatment under conditions that better approximate potential human dosing. To evaluate the dantrolene/AON combination treatment effect on dystrophin induction, we assayed three AON doses, with and without oral dantrolene, to assess multiple outcomes across different muscles. Meta-analyses of the results of statistical tests from both the quadriceps and diaphragm assessing contributions of dantrolene beyond AON, across all AON treatment groups, provide strong evidence that dantrolene modestly boosts exon skipping and dystrophin rescue while reducing muscle pathology in mdx mice (p < 0.0087). These findings support a trial of combination dantrolene/AON to increase exon-skipping efficacy and highlight the value of combinatorial approaches and Food and Drug Administration (FDA) drug re-purposing for discovery of unsuspected therapeutic application and rapid translation.


Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism.

  • Stephan J Sanders‎ et al.
  • Neuron‎
  • 2011‎

We have undertaken a genome-wide analysis of rare copy-number variation (CNV) in 1124 autism spectrum disorder (ASD) families, each comprised of a single proband, unaffected parents, and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, characterized by a highly social personality. We identify rare recurrent de novo CNVs at five additional regions, including 16p13.2 (encompassing genes USP7 and C16orf72) and Cadherin 13, and implement a rigorous approach to evaluating the statistical significance of these observations. Overall, large de novo CNVs, particularly those encompassing multiple genes, confer substantial risks (OR = 5.6; CI = 2.6-12.0, p = 2.4 × 10(-7)). We estimate there are 130-234 ASD-related CNV regions in the human genome and present compelling evidence, based on cumulative data, for association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin 1.


The Genetic Architecture of Carbon Tetrachloride-Induced Liver Fibrosis in Mice.

  • Iina Tuominen‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2021‎

Liver fibrosis is a multifactorial trait that develops in response to chronic liver injury. Our aim was to characterize the genetic architecture of carbon tetrachloride (CCl4)-induced liver fibrosis using the Hybrid Mouse Diversity Panel, a panel of more than 100 genetically distinct mouse strains optimized for genome-wide association studies and systems genetics.


GAW20: methods and strategies for the new frontiers of epigenetics and pharmacogenomics.

  • Nathan L Tintle‎ et al.
  • BMC proceedings‎
  • 2018‎

GAW20 provided a platform for developing and evaluating statistical methods to analyze human lipid-related phenotypes, DNA methylation, and single-nucleotide markers in a study involving a pharmaceutical intervention. In this article, we present an overview of the data sets and the contributions analyzing these data. The data, donated by the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) investigators, included data from 188 families (N = 1105) which included genome-wide DNA methylation data before and after a 3-week treatment with fenofibrate, single-nucleotide polymorphisms, metabolic syndrome components before and after treatment, and a variety of covariates. The contributions from individual research groups were extensively discussed prior, during, and after the Workshop in groups based on discussion themes, before being submitted for publication.


Sequencing strategies and characterization of 721 vervet monkey genomes for future genetic analyses of medically relevant traits.

  • Yu S Huang‎ et al.
  • BMC biology‎
  • 2015‎

We report here the first genome-wide high-resolution polymorphism resource for non-human primate (NHP) association and linkage studies, constructed for the Caribbean-origin vervet monkey, or African green monkey (Chlorocebus aethiops sabaeus), one of the most widely used NHPs in biomedical research. We generated this resource by whole genome sequencing (WGS) of monkeys from the Vervet Research Colony (VRC), an NIH-supported research resource for which extensive phenotypic data are available.


A genome-wide scan for common alleles affecting risk for autism.

  • Richard Anney‎ et al.
  • Human molecular genetics‎
  • 2010‎

Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10(-8). When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10(-8) threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.


Replication of autism linkage: fine-mapping peak at 17q21.

  • Rita M Cantor‎ et al.
  • American journal of human genetics‎
  • 2005‎

Autism is a heritable but genetically complex disorder characterized by deficits in language and in reciprocal social interactions, combined with repetitive and stereotypic behaviors. As with many genetically complex disorders, numerous genome scans reveal inconsistent results. A genome scan of 345 families from the Autism Genetic Resource Exchange (AGRE) (AGRE_1), gave the strongest evidence of linkage at 17q11-17q21 in families with no affected females. Here, we report a full-genome scan of an independent sample of 91 AGRE families with 109 affected sibling pairs (AGRE_2) that also shows the strongest evidence of linkage to 17q11-17q21 in families with no affected females. Taken together, these samples provide a replication of linkage to this chromosome region that is, to our knowledge, the first such replication in autism. Fine mapping at 2-centimorgan (cM) intervals in the combined sample of families with no affected females reveals a linkage peak at 66.85 cM, which places this locus at 17q21.


Genome-wide linkage and association analyses implicate FASN in predisposition to Uterine Leiomyomata.

  • Stacey L Eggert‎ et al.
  • American journal of human genetics‎
  • 2012‎

Uterine leiomyomata (UL), the most prevalent pelvic tumors in women of reproductive age, pose a major public health problem given their high frequency, associated morbidities, and most common indication for hysterectomies. A genetic component to UL predisposition is supported by analyses of ethnic predisposition, twin studies, and familial aggregation. A genome-wide SNP linkage panel was genotyped and analyzed in 261 white UL-affected sister-pair families from the Finding Genes for Fibroids study. Two significant linkage regions were detected in 10p11 (LOD = 4.15) and 3p21 (LOD = 3.73), and five additional linkage regions were identified with LOD scores > 2.00 in 2q37, 5p13, 11p15, 12q14, and 17q25. Genome-wide association studies were performed in two independent cohorts of white women, and a meta-analysis was conducted. One SNP (rs4247357) was identified with a p value (p = 3.05 × 10(-8)) that reached genome-wide significance (odds ratio = 1.299). The candidate SNP is under a linkage peak and in a block of linkage disequilibrium in 17q25.3, which spans fatty acid synthase (FASN), coiled-coil-domain-containing 57 (CCDC57), and solute-carrier family 16, member 3 (SLC16A3). By tissue microarray immunohistochemistry, we found elevated (3-fold) FAS levels in UL-affected tissue compared to matched myometrial tissue. FAS transcripts and/or protein levels are upregulated in various neoplasms and implicated in tumor cell survival. FASN represents the initial UL risk allele identified in white women by a genome-wide, unbiased approach and opens a path to management and potential therapeutic intervention.


Support for calcium channel gene defects in autism spectrum disorders.

  • Ake Tzu-Hui Lu‎ et al.
  • Molecular autism‎
  • 2012‎

Alternation of synaptic homeostasis is a biological process whose disruption might predispose children to autism spectrum disorders (ASD). Calcium channel genes (CCG) contribute to modulating neuronal function and evidence implicating CCG in ASD has been accumulating. We conducted a targeted association analysis of CCG using existing genome-wide association study (GWAS) data and imputation methods in a combined sample of parent/affected child trios from two ASD family collections to explore this hypothesis.


Contribution of common and rare variants to bipolar disorder susceptibility in extended pedigrees from population isolates.

  • Jae Hoon Sul‎ et al.
  • Translational psychiatry‎
  • 2020‎

Current evidence from case/control studies indicates that genetic risk for psychiatric disorders derives primarily from numerous common variants, each with a small phenotypic impact. The literature describing apparent segregation of bipolar disorder (BP) in numerous multigenerational pedigrees suggests that, in such families, large-effect inherited variants might play a greater role. To identify roles of rare and common variants on BP, we conducted genetic analyses in 26 Colombia and Costa Rica pedigrees ascertained for bipolar disorder 1 (BP1), the most severe and heritable form of BP. In these pedigrees, we performed microarray SNP genotyping of 838 individuals and high-coverage whole-genome sequencing of 449 individuals. We compared polygenic risk scores (PRS), estimated using the latest BP1 genome-wide association study (GWAS) summary statistics, between BP1 individuals and related controls. We also evaluated whether BP1 individuals had a higher burden of rare deleterious single-nucleotide variants (SNVs) and rare copy number variants (CNVs) in a set of genes related to BP1. We found that compared with unaffected relatives, BP1 individuals had higher PRS estimated from BP1 GWAS statistics (P = 0.001 ~ 0.007) and displayed modest increase in burdens of rare deleterious SNVs (P = 0.047) and rare CNVs (P = 0.002 ~ 0.033) in genes related to BP1. We did not observe rare variants segregating in the pedigrees. These results suggest that small-to-moderate effect rare and common variants are more likely to contribute to BP1 risk in these extended pedigrees than a few large-effect rare variants.


Characterization of Expression Quantitative Trait Loci in Pedigrees from Colombia and Costa Rica Ascertained for Bipolar Disorder.

  • Christine B Peterson‎ et al.
  • PLoS genetics‎
  • 2016‎

The observation that variants regulating gene expression (expression quantitative trait loci, eQTL) are at a high frequency among SNPs associated with complex traits has made the genome-wide characterization of gene expression an important tool in genetic mapping studies of such traits. As part of a study to identify genetic loci contributing to bipolar disorder and other quantitative traits in members of 26 pedigrees from Costa Rica and Colombia, we measured gene expression in lymphoblastoid cell lines derived from 786 pedigree members. The study design enabled us to comprehensively reconstruct the genetic regulatory network in these families, provide estimates of heritability, identify eQTL, evaluate missing heritability for the eQTL, and quantify the number of different alleles contributing to any given locus. In the eQTL analysis, we utilize a recently proposed hierarchical multiple testing strategy which controls error rates regarding the discovery of functional variants. Our results elucidate the heritability and regulation of gene expression in this unique Latin American study population and identify a set of regulatory SNPs which may be relevant in future investigations of complex disease in this population. Since our subjects belong to extended families, we are able to compare traditional kinship-based estimates with those from more recent methods that depend only on genotype information.


Rare Inherited and De Novo CNVs Reveal Complex Contributions to ASD Risk in Multiplex Families.

  • Virpi M Leppa‎ et al.
  • American journal of human genetics‎
  • 2016‎

Rare mutations, including copy-number variants (CNVs), contribute significantly to autism spectrum disorder (ASD) risk. Although their importance has been established in families with only one affected child (simplex families), the contribution of both de novo and inherited CNVs to ASD in families with multiple affected individuals (multiplex families) is less well understood. We analyzed 1,532 families from the Autism Genetic Resource Exchange (AGRE) to assess the impact of de novo and rare CNVs on ASD risk in multiplex families. We observed a higher burden of large, rare CNVs, including inherited events, in individuals with ASD than in their unaffected siblings (odds ratio [OR] = 1.7), but the rate of de novo events was significantly lower than in simplex families. In previously characterized ASD risk loci, we identified 49 CNVs, comprising 24 inherited events, 19 de novo events, and 6 events of unknown inheritance, a significant enrichment in affected versus control individuals (OR = 3.3). In 21 of the 30 families (71%) in whom at least one affected sibling harbored an established ASD major risk CNV, including five families harboring inherited CNVs, the CNV was not shared by all affected siblings, indicating that other risk factors are contributing. We also identified a rare risk locus for ASD and language delay at chromosomal region 2q24 (implicating NR4A2) and another lower-penetrance locus involving inherited deletions and duplications of WWOX. The genetic architecture in multiplex families differs from that in simplex families and is complex, warranting more complete genetic characterization of larger multiplex ASD cohorts.


Genetic complexity at expression quantitative trait loci.

  • Rita M Cantor‎ et al.
  • BMC proceedings‎
  • 2016‎

Identifying variants that regulate gene expression and delineating their genetic architecture is a critical next step in our endeavors to better understand the genetic etiology of complex diseases. The appropriate genomic tools are in place, and preliminary analytic strategies have been developed.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: