Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

LDL cholesterol recycles to the plasma membrane via a Rab8a-Myosin5b-actin-dependent membrane transport route.

  • Kristiina Kanerva‎ et al.
  • Developmental cell‎
  • 2013‎

Mammalian cells acquire cholesterol, a major membrane constituent, via low-density lipoprotein (LDL) uptake. However, the mechanisms by which LDL cholesterol reaches the plasma membrane (PM) have remained obscure. Here, we applied LDL labeled with BODIPY cholesteryl linoleate to identify this pathway in living cells. The egress of BODIPY cholesterol (BC) from late endosomal (LE) organelles was dependent on acid lipase and Niemann-Pick C1 (NPC1) protein, as for natural cholesterol. We show that NPC1 was needed to recruit Rab8a to BC-containing LEs, and Rab8a enhanced the motility and segregation of BC- and CD63-positive organelles from lysosomes. The BC carriers docked to the cortical actin by a Rab8a- and Myosin5b (Myo5b)-dependent mechanism, typically in the proximity of focal adhesions (FAs). LDL increased the number and dynamics of FAs and stimulated cell migration in an acid lipase, NPC1, and Rab8a-dependent fashion, providing evidence that this cholesterol delivery route to the PM is important for cell movement.


Molecular and functional architecture of striatal dopamine release sites.

  • Aditi Banerjee‎ et al.
  • Neuron‎
  • 2022‎

Despite the importance of dopamine for striatal circuit function, mechanistic understanding of dopamine transmission remains incomplete. We recently showed that dopamine secretion relies on the presynaptic scaffolding protein RIM, indicating that it occurs at active zone-like sites similar to classical synaptic vesicle exocytosis. Here, we establish using a systematic gene knockout approach that Munc13 and Liprin-α, active zone proteins for vesicle priming and release site organization, are important for dopamine secretion. Furthermore, RIM zinc finger and C2B domains, which bind to Munc13 and Liprin-α, respectively, are needed to restore dopamine release after RIM ablation. In contrast, and different from typical synapses, the active zone scaffolds RIM-BP and ELKS, and RIM domains that bind to them, are expendable. Hence, dopamine release necessitates priming and release site scaffolding by RIM, Munc13, and Liprin-α, but other active zone proteins are dispensable. Our work establishes that efficient release site architecture mediates fast dopamine exocytosis.


Membrane interaction and disulphide-bridge formation in the unconventional secretion of Tau.

  • Marianna Hellén‎ et al.
  • Bioscience reports‎
  • 2021‎

Misfolded, pathological tau protein propagates from cell to cell causing neuronal degeneration in Alzheimer's disease and other tauopathies. The molecular mechanisms of this process have remained elusive. Unconventional secretion of tau takes place via several different routes, including direct penetration through the plasma membrane. Here, we show that tau secretion requires membrane interaction via disulphide bridge formation. Mutating residues that reduce tau interaction with membranes or formation of disulphide bridges decrease both tau secretion from cells, and penetration through artificial lipid membranes. Our results demonstrate that tau is indeed able to penetrate protein-free membranes in a process independent of active cellular processes and that both membrane interaction and disulphide bridge formation are needed for this process. QUARK-based de novo modelling of the second and third microtubule-binding repeat domains (MTBDs), in which the two cysteine residues of 4R isoforms of tau are located, supports the concept that this region of tau could form transient amphipathic helices for membrane interaction.


Secretion of Tau via an Unconventional Non-vesicular Mechanism.

  • Maria Merezhko‎ et al.
  • Cell reports‎
  • 2018‎

Tauopathies are characterized by cerebral accumulation of Tau protein aggregates that appear to spread throughout the brain via a cell-to-cell transmission process that includes secretion and uptake of pathological Tau, followed by templated misfolding of normal Tau in recipient cells. Here, we show that phosphorylated, oligomeric Tau clusters at the plasma membrane in N2A cells and is secreted in vesicle-free form in an unconventional process sensitive to changes in membrane properties, particularly cholesterol and sphingomyelin content. Cell surface heparan sulfate proteoglycans support Tau secretion, possibly by facilitating its release after membrane penetration. Notably, secretion of endogenous Tau from primary cortical neurons is mediated, at least partially, by a similar mechanism. We suggest that Tau is released from cells by an unconventional secretory mechanism that involves its phosphorylation and oligomerization and that membrane interaction may help Tau to acquire properties that allow its escape from cells directly through the plasma membrane.


Live-cell monitoring of protein localization to membrane rafts using protein-fragment complementation.

  • Maria Merezhko‎ et al.
  • Bioscience reports‎
  • 2020‎

The plasma membrane consists of a variety of discrete domains differing from the surrounding membrane in composition and properties. Selective partitioning of protein to these microdomains is essential for membrane functioning and integrity. Studying the nanoscale size and dynamic nature of the membrane microdomains requires advanced imaging approaches with a high spatiotemporal resolution and, consequently, expensive and specialized equipment, unavailable for most researchers and unsuited for large-scale studies. Thus, understanding of protein partitioning to the membrane microdomains in health and disease is still hampered by the lack of inexpensive live-cell approaches with an appropriate spatial resolution. Here, we have developed a novel approach based on Gaussia princeps luciferase protein-fragment complementation assay to quantitively investigate protein partitioning to cholesterol and sphingomyelin-rich domains, sometimes called 'lipid rafts', in intact living cells with a high-spatial resolution. In the assay, the reporter construct, carrying one half of the luciferase protein, is targeted to lipid microdomains through the fused acetylation motif from Src-family kinase Fyn. A protein of interest carries the second half of the luciferase protein. Together, this serves as a reversible real-time sensor of raft recruitment for the studied protein. We demonstrated that the assay can efficiently detect the dynamic alterations in raft localization of two disease-associated proteins: Akt and APP. Importantly, this method can be used in high-throughput screenings and other large-scale studies in living cells. This inexpensive, and easy to implement raft localization assay will benefit all researchers interested in protein partitioning in rafts.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: