Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Tissue-type plasminogen activator controls neuronal death by raising surface dynamics of extrasynaptic NMDA receptors.

  • Flavie Lesept‎ et al.
  • Cell death & disease‎
  • 2016‎

N-methyl-d-aspartate receptors (NMDARs) are ion channels whose synaptic versus extrasynaptic localization critically influences their functions. This distribution of NMDARs is highly dependent on their lateral diffusion at the cell membrane. Each obligatory subunit of NMDARs (GluN1 and GluN2) contains two extracellular clamshell-like domains with an agonist-binding domain and a distal N-terminal domain (NTD). To date, the roles and dynamics of the NTD of the GluN1 subunit in NMDAR allosteric signaling remain poorly understood. Using single nanoparticle tracking in mouse neurons, we demonstrate that the extracellular neuronal protease tissue-type plasminogen activator (tPA), well known to have a role in the synaptic plasticity and neuronal survival, leads to a selective increase of the surface dynamics and subsequent diffusion of extrasynaptic NMDARs. This process explains the previously reported ability of tPA to promote NMDAR-mediated calcium influx. In parallel, we developed a monoclonal antibody capable of specifically blocking the interaction of tPA with the NTD of the GluN1 subunit of NMDAR. Using this original approach, we demonstrate that the tPA binds the NTD of the GluN1 subunit at a lysine in position 178. Accordingly, when applied to mouse neurons, our selected antibody (named Glunomab) leads to a selective reduction of the tPA-mediated surface dynamics of extrasynaptic NMDARs, subsequent signaling and neurotoxicity, both in vitro and in vivo. Altogether, we demonstrate that the tPA is a ligand of the NTD of the obligatory GluN1 subunit of NMDAR acting as a modulator of their dynamic distribution at the neuronal surface and subsequent signaling.


Tissue-type plasminogen activator exerts EGF-like chemokinetic effects on oligodendrocytes in white matter (re)myelination.

  • Camille Leonetti‎ et al.
  • Molecular neurodegeneration‎
  • 2017‎

The ability of oligodendrocyte progenitor cells (OPCs) to give raise to myelin forming cells during developmental myelination, normal adult physiology and post-lesion remyelination in white matter depends on factors which govern their proliferation, migration and differentiation. Tissue plasminogen activator (tPA) is a serine protease expressed in the central nervous system (CNS), where it regulates cell fate. In particular, tPA has been reported to protect oligodendrocytes from apoptosis and to facilitate the migration of neurons. Here, we investigated whether tPA can also participate in the migration of OPCs during CNS development and during remyelination after focal white matter lesion.


Tissue plasminogen activator prevents white matter damage following stroke.

  • Fernando Correa‎ et al.
  • The Journal of experimental medicine‎
  • 2011‎

Tissue plasminogen activator (tPA) is the only available treatment for acute stroke. In addition to its vascular fibrinolytic action, tPA exerts various effects within the brain, ranging from synaptic plasticity to control of cell fate. To date, the influence of tPA in the ischemic brain has only been investigated on neuronal, microglial, and endothelial fate. We addressed the mechanism of action of tPA on oligodendrocyte (OL) survival and on the extent of white matter lesions in stroke. We also investigated the impact of aging on these processes. We observed that, in parallel to reduced levels of tPA in OLs, white matter gets more susceptible to ischemia in old mice. Interestingly, tPA protects murine and human OLs from apoptosis through an unexpected cytokine-like effect by the virtue of its epidermal growth factor-like domain. When injected into aged animals, tPA, although toxic to the gray matter, rescues white matter from ischemia independently of its proteolytic activity. These studies reveal a novel mechanism of action of tPA and unveil OL as a target cell for cytokine effects of tPA in brain diseases. They show overall that tPA protects white matter from stroke-induced lesions, an effect which may contribute to the global benefit of tPA-based stroke treatment.


Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders.

  • Axel Montagne‎ et al.
  • NeuroImage‎
  • 2012‎

Since endothelial cells can be targeted by large contrast-carrying particles, molecular imaging of cerebrovascular cell activation is highly promising to evaluate the underlying inflammation of the central nervous system (CNS). In this study, we aimed to demonstrate that molecular magnetic resonance imaging (MRI) of cerebrovascular cell activation can reveal CNS disorders in the absence of visible lesions and symptoms. To this aim, we optimized contrast carrying particles targeting vascular cell adhesion molecule-1 and MRI protocols through both in vitro and in vivo experiments. Although, pre-contrast MRI images failed to reveal the ongoing pathology, contrast-enhanced MRI revealed hypoperfusion-triggered CNS injury in vascular dementia, unmasked amyloid-induced cerebrovascular activation in Alzheimer's disease and allowed monitoring of disease activity during experimental autoimmune encephalomyelitis. Moreover, contrast-enhanced MRI revealed the cerebrovascular cell activation associated with known risk factors of CNS disorders such as peripheral inflammation, ethanol consumption, hyperglycemia and aging. By providing a dramatically higher sensitivity than previously reported methods and molecular contrast agents, the technology described in the present study opens new avenues of investigation in the field of neuroinflammation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: