Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation.

  • Victoria A Blaho‎ et al.
  • Nature‎
  • 2015‎

Lipid mediators influence immunity in myriad ways. For example, circulating sphingosine-1-phosphate (S1P) is a key regulator of lymphocyte egress. Although the majority of plasma S1P is bound to apolipoprotein M (ApoM) in the high-density lipoprotein (HDL) particle, the immunological functions of the ApoM-S1P complex are unknown. Here we show that ApoM-S1P is dispensable for lymphocyte trafficking yet restrains lymphopoiesis by activating the S1P1 receptor on bone marrow lymphocyte progenitors. Mice that lacked ApoM (Apom(-/-)) had increased proliferation of Lin(-) Sca-1(+) cKit(+) haematopoietic progenitor cells (LSKs) and common lymphoid progenitors (CLPs) in bone marrow. Pharmacological activation or genetic overexpression of S1P1 suppressed LSK and CLP cell proliferation in vivo. ApoM was stably associated with bone marrow CLPs, which showed active S1P1 signalling in vivo. Moreover, ApoM-bound S1P, but not albumin-bound S1P, inhibited lymphopoiesis in vitro. Upon immune stimulation, Apom(-/-) mice developed more severe experimental autoimmune encephalomyelitis, characterized by increased lymphocytes in the central nervous system and breakdown of the blood-brain barrier. Thus, the ApoM-S1P-S1P1 signalling axis restrains the lymphocyte compartment and, subsequently, adaptive immune responses. Unique biological functions imparted by specific S1P chaperones could be exploited for novel therapeutic opportunities.


Activated platelets release sphingosine 1-phosphate and induce hypersensitivity to noxious heat stimuli in vivo.

  • Daniela Weth‎ et al.
  • Frontiers in neuroscience‎
  • 2015‎

At the site of injury activated platelets release various mediators, one of which is sphingosine 1-phosphate (S1P). It was the aim of this study to explore whether activated human platelets had a pronociceptive effect in an in vivo mouse model and whether this effect was based on the release of S1P and subsequent activation of neuronal S1P receptors 1 or 3. Human platelets were prepared in different concentrations (10(5)/μl, 10(6)/μl, 10(7)/μl) and assessed in mice with different genetic backgrounds (WT, S1P1 (fl/fl), SNS-S1P1 (-/-), S1P3 (-/-)). Intracutaneous injections of activated human platelets induced a significant, dose-dependent hypersensitivity to noxious thermal stimulation. The degree of heat hypersensitivity correlated with the platelet concentration as well as the platelet S1P content and the amount of S1P released upon platelet activation as measured with LC MS/MS. Despite the significant correlations between S1P and platelet count, no difference in paw withdrawal latency (PWL) was observed in mice with a global null mutation of the S1P3 receptor or a conditional deletion of the S1P1 receptor in nociceptive primary afferents. Furthermore, neutralization of S1P with a selective anti-S1P antibody did not abolish platelet induced heat hypersensitivity. Our results suggest that activated platelets release S1P and induce heat hypersensitivity in vivo. However, the platelet induced heat hypersensitivity was caused by mediators other than S1P.


Sphingosine-1-phosphate phosphatase 1 regulates keratinocyte differentiation and epidermal homeostasis.

  • Maria L Allende‎ et al.
  • The Journal of biological chemistry‎
  • 2013‎

Sphingosine 1-phosphate (S1P) is a bioactive lipid whose levels are tightly regulated by its synthesis and degradation. Intracellularly, S1P is dephosphorylated by the actions of two S1P-specific phosphatases, sphingosine-1-phosphate phosphatases 1 and 2. To identify the physiological functions of S1P phosphatase 1, we have studied mice with its gene, Sgpp1, deleted. Sgpp1(-/-) mice appeared normal at birth, but during the 1st week of life they exhibited stunted growth and suffered desquamation, with most dying before weaning. Both Sgpp1(-/-) pups and surviving adults exhibited multiple epidermal abnormalities. Interestingly, the epidermal permeability barrier developed normally during embryogenesis in Sgpp1(-/-) mice. Keratinocytes isolated from the skin of Sgpp1(-/-) pups had increased intracellular S1P levels and displayed a gene expression profile that indicated overexpression of genes associated with keratinocyte differentiation. The results reveal S1P metabolism as a regulator of keratinocyte differentiation and epidermal homeostasis.


The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR.

  • Guangwei Liu‎ et al.
  • Nature immunology‎
  • 2009‎

Regulatory T cells (T(reg) cells) are critically involved in maintaining immunological tolerance, but this potent suppression must be 'quenched' to allow the generation of adaptive immune responses. Here we report that sphingosine 1-phosphate (S1P) receptor type 1 (S1P1) delivers an intrinsic negative signal to restrain the thymic generation, peripheral maintenance and suppressive activity of T(reg) cells. Combining loss- and gain-of-function genetic approaches, we found that S1P1 blocked the differentiation of thymic T(reg) precursors and function of mature T(reg) cells and affected T(reg) cell-mediated immune tolerance. S1P1 induced selective activation of the Akt-mTOR kinase pathway to impede the development and function of T(reg) cells. Dynamic regulation of S1P1 contributed to lymphocyte priming and immune homeostasis. Thus, by antagonizing T(reg) cell-mediated immune suppression, the lipid-activated S1P1-Akt-mTOR pathway orchestrates adaptive immune responses.


Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta.

  • Eric Engelbrecht‎ et al.
  • eLife‎
  • 2020‎

Despite the medical importance of G protein-coupled receptors (GPCRs), in vivo cellular heterogeneity of GPCR signaling and downstream transcriptional responses are not understood. We report the comprehensive characterization of transcriptomes (bulk and single-cell) and chromatin domains regulated by sphingosine 1-phosphate receptor-1 (S1PR1) in adult mouse aortic endothelial cells. First, S1PR1 regulates NFκB and nuclear glucocorticoid receptor pathways to suppress inflammation-related mRNAs. Second, S1PR1 signaling in the heterogenous endothelial cell (EC) subtypes occurs at spatially-distinct areas of the aorta. For example, a transcriptomically distinct arterial EC population at vascular branch points (aEC1) exhibits ligand-independent S1PR1/ß-arrestin coupling. In contrast, circulatory S1P-dependent S1PR1/ß-arrestin coupling was observed in non-branch point aEC2 cells that exhibit an inflammatory gene expression signature. Moreover, S1P/S1PR1 signaling regulates the expression of lymphangiogenic and inflammation-related transcripts in an adventitial lymphatic EC (LEC) population in a ligand-dependent manner. These insights add resolution to existing concepts of endothelial heterogeneity, GPCR signaling and S1P biology.


Sphingosine Kinase 2 Phosphorylation of FTY720 is Unnecessary for Prevention of Light-Induced Retinal Damage.

  • Hui Qi‎ et al.
  • Scientific reports‎
  • 2019‎

Mammalian Sphingosine kinase 2 is the primary enzyme responsible for phosphorylating FTY720 to its active form, FTY720-P. Systemic FTY720 treatment confers significant protection to murine retinas from light- and disease-mediated photoreceptor cell death. It is not clear whether FTY720-P, FTY720, or both are responsible for this photoreceptor protection. We investigated Sphingosine kinase 2 knockout (Sphk2 KO) mouse retinas, tested their sensitivity to light, and measured what degree of protection from light-induced damage they receive from systemic FTY720 treatment. Sphk2 KO retinas were found to be similar to their wild-type counterparts in sensitivity to light damage. Additionally, FTY720 treatment protected Sphk2 KO retinas from light-induced damage despite significant retardation of FTY720 phosphorylation in Sphk2 KO mice. We conclude that FTY720 serves an active role in preventing photoreceptor cell death. Furthermore, we conclude that the phosphorylation of FTY720 is not necessary to provide this protective effect.


Sphingosine-1-Phosphate Enhances α1-Adrenergic Vasoconstriction via S1P2-G12/13-ROCK Mediated Signaling.

  • Cecília R Panta‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Sphingosine-1-phosphate (S1P) has been implicated recently in the physiology and pathology of the cardiovascular system including regulation of vascular tone. Pilot experiments showed that the vasoconstrictor effect of S1P was enhanced markedly in the presence of phenylephrine (PE). Based on this observation, we hypothesized that S1P might modulate α1-adrenergic vasoactivity. In murine aortas, a 20-minute exposure to S1P but not to its vehicle increased the Emax and decreased the EC50 of PE-induced contractions indicating a hyperreactivity to α1-adrenergic stimulation. The potentiating effect of S1P disappeared in S1P2 but not in S1P3 receptor-deficient vessels. In addition, smooth muscle specific conditional deletion of G12/13 proteins or pharmacological inhibition of the Rho-associated protein kinase (ROCK) by Y-27632 or fasudil abolished the effect of S1P on α1-adrenergic vasoconstriction. Unexpectedly, PE-induced contractions remained enhanced markedly as late as three hours after S1P-exposure in wild-type (WT) and S1P3 KO but not in S1P2 KO vessels. In conclusion, the S1P-S1P2-G12/13-ROCK signaling pathway appears to have a major influence on α1-adrenergic vasoactivity. This cooperativity might lead to sustained vasoconstriction when increased sympathetic tone is accompanied by increased S1P production as it occurs during acute coronary syndrome and stroke.


Overexpression of ORMDL3 confers sexual dimorphism in diet-induced non-alcoholic steatohepatitis.

  • Ryan D R Brown‎ et al.
  • Molecular metabolism‎
  • 2024‎

The bioactive sphingolipid metabolites ceramide and sphingosine-1-phosphate (S1P) accumulate with overnutrition and have been implicated in non-alcoholic steatohepatitis (NASH) development. ORMDL3, a negative regulator of the rate-limiting step in ceramide biosynthesis, has been identified as an obesity-related gene. Therefore, we assessed the role of ORMDL3 in diet-induced obesity and development of NASH.


Lysolipid receptor cross-talk regulates lymphatic endothelial junctions in lymph nodes.

  • Yu Hisano‎ et al.
  • The Journal of experimental medicine‎
  • 2019‎

Sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) activate G protein-coupled receptors (GPCRs) to regulate biological processes. Using a genome-wide CRISPR/dCas9-based GPCR signaling screen, LPAR1 was identified as an inducer of S1PR1/β-arrestin coupling while suppressing Gαi signaling. S1pr1 and Lpar1-positive lymphatic endothelial cells (LECs) of lymph nodes exhibit constitutive S1PR1/β-arrestin signaling, which was suppressed by LPAR1 antagonism. Pharmacological inhibition or genetic loss of function of Lpar1 reduced the frequency of punctate junctions at sinus-lining LECs. Ligand activation of transfected LPAR1 in endothelial cells remodeled junctions from continuous to punctate structures and increased transendothelial permeability. In addition, LPAR1 antagonism in mice increased lymph node retention of adoptively transferred lymphocytes. These data suggest that cross-talk between LPAR1 and S1PR1 promotes the porous junctional architecture of sinus-lining LECs, which enables efficient lymphocyte trafficking. Heterotypic inter-GPCR coupling may regulate complex cellular phenotypes in physiological milieu containing many GPCR ligands.


Sphingosine-1-phosphate Phosphatase 2 Regulates Pancreatic Islet β-Cell Endoplasmic Reticulum Stress and Proliferation.

  • Yoshimitsu Taguchi‎ et al.
  • The Journal of biological chemistry‎
  • 2016‎

Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that regulates basic cell functions through metabolic and signaling pathways. Intracellular metabolism of S1P is controlled, in part, by two homologous S1P phosphatases (SPPases), 1 and 2, which are encoded by the Sgpp1 and Sgpp2 genes, respectively. SPPase activity is needed for efficient recycling of sphingosine into the sphingolipid synthesis pathway. SPPase 1 is important for skin homeostasis, but little is known about the functional role of SPPase 2. To identify the functions of SPPase 2 in vivo, we studied mice with the Sgpp2 gene deleted. In contrast to Sgpp1(-/-) mice, Sgpp2(-/-) mice had normal skin and were viable into adulthood. Unexpectedly, WT mice expressed Sgpp2 mRNA at high levels in pancreatic islets when compared with other tissues. Sgpp2(-/-) mice had normal pancreatic islet size; however, they exhibited defective adaptive β-cell proliferation that was demonstrated after treatment with either a high-fat diet or the β-cell-specific toxin, streptozotocin. Importantly, β-cells from untreated Sgpp2(-/-) mice showed significantly increased expression of proteins characteristic of the endoplasmic reticulum stress response compared with β-cells from WT mice, indicating a basal islet defect. Our results show that Sgpp2 deletion causes β-cell endoplasmic reticulum stress, which is a known cause of β-cell dysfunction, and reveal a juncture in the sphingolipid recycling pathway that could impact the development of diabetes.


Ablation of PPARγ in subcutaneous fat exacerbates age-associated obesity and metabolic decline.

  • Lingyan Xu‎ et al.
  • Aging cell‎
  • 2018‎

It is well established that aging is associated with metabolic dysfunction such as increased adiposity and impaired energy dissipation; however, the transcriptional mechanisms regulating energy balance during late life stages have not yet been fully elucidated. Here, we show that ablation of the nuclear receptor PPARγ specifically in inguinal fat tissue in aging mice is associated with increased fat tissue expansion and insulin resistance. These metabolic effects are accompanied by decreased thermogenesis, reduced levels of brown fat genes, and browning of subcutaneous adipose tissue. Comparative studies of the effects of PPARγ downregulation in young and mid-aged mice demonstrate a preferential regulation of brown fat gene programs in inguinal fat in an age-dependent manner. In conclusion, our study uncovers an essential role for PPARγ in maintaining energy expenditure during the aging process and suggests the possibility of targeting PPARγ to counteract age-associated metabolic dysfunction.


Sphingosine-1-Phosphate and the S1P3 Receptor Initiate Neuronal Retraction via RhoA/ROCK Associated with CRMP2 Phosphorylation.

  • Serena Quarta‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2017‎

The bioactive lipid sphingosine-1-phosphate (S1P) is an important regulator in the nervous system. Here, we explored the role of S1P and its receptors in vitro and in preclinical models of peripheral nerve regeneration. Adult sensory neurons and motor neuron-like cells were exposed to S1P in an in vitro assay, and virtually all neurons responded with a rapid retraction of neurites and growth cone collapse which were associated with RhoA and ROCK activation. The S1P1 receptor agonist SEW2871 neither activated RhoA or neurite retraction, nor was S1P-induced neurite retraction mitigated in S1P1-deficient neurons. Depletion of S1P3 receptors however resulted in a dramatic inhibition of S1P-induced neurite retraction and was on the contrary associated with a significant elongation of neuronal processes in response to S1P. Opposing responses to S1P could be observed in the same neuron population, where S1P could activate S1P1 receptors to stimulate elongation or S1P3 receptors and retraction. S1P was, for the first time in sensory neurons, linked to the phosphorylation of collapsin response-mediated protein-2 (CRMP2), which was inhibited by ROCK inhibition. The improved sensory recovery after crush injury further supported the relevance of a critical role for S1P and receptors in fine-tuning axonal outgrowth in peripheral neurons.


S1P₄ Regulates Passive Systemic Anaphylaxis in Mice but Is Dispensable for Canonical IgE-Mediated Responses in Mast Cells.

  • Joseph M Kulinski‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Mast cells are key players in the development of inflammatory allergic reactions. Cross-linking of the high-affinity receptor for IgE (FcεRI) on mast cells leads to the generation and secretion of the sphingolipid mediator, sphingosine-1-phosphate (S1P) which is able, in turn, to transactivate its receptors on mast cells. Previous reports have identified the expression of two of the five receptors for S1P on mast cells, S1P₁ and S1P₂, with functions in FcεRI-mediated chemotaxis and degranulation, respectively. Here, we show that cultured mouse mast cells also express abundant message for S1P₄. Genetic deletion of S1pr4 did not affect the differentiation of bone marrow progenitors into mast cells or the proliferation of mast cells in culture. A comprehensive characterization of IgE-mediated responses in S1P₄-deficient bone marrow-derived and peritoneal mouse mast cells indicated that this receptor is dispensable for mast cell degranulation, cytokine/chemokine production and FcεRI-mediated chemotaxis in vitro. However, interleukin-33 (IL-33)-mediated enhancement of IgE-induced degranulation was reduced in S1P₄-deficient peritoneal mast cells, revealing a potential negative regulatory role for S1P₄ in an IL-33-rich environment. Surprisingly, genetic deletion of S1pr4 resulted in exacerbation of passive systemic anaphylaxis to IgE/anti-IgE in mice, a phenotype likely related to mast cell-extrinsic influences, such as the high circulating levels of IgE in these mice which increases FcεRI expression and consequently the extent of the response to FcεRI engagement. Thus, we provide evidence that S1P₄ modulates anaphylaxis in an unexpected manner that does not involve regulation of mast cell responsiveness to IgE stimulation.


A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis.

  • Lin Zhang‎ et al.
  • The Journal of experimental medicine‎
  • 2012‎

Millions of platelets are produced each hour by bone marrow (BM) megakaryocytes (MKs). MKs extend transendothelial proplatelet (PP) extensions into BM sinusoids and shed new platelets into the blood. The mechanisms that control platelet generation remain incompletely understood. Using conditional mutants and intravital multiphoton microscopy, we show here that the lipid mediator sphingosine 1-phosphate (S1P) serves as a critical directional cue guiding the elongation of megakaryocytic PP extensions from the interstitium into BM sinusoids and triggering the subsequent shedding of PPs into the blood. Correspondingly, mice lacking the S1P receptor S1pr1 develop severe thrombocytopenia caused by both formation of aberrant extravascular PPs and defective intravascular PP shedding. In contrast, activation of S1pr1 signaling leads to the prompt release of new platelets into the circulating blood. Collectively, our findings uncover a novel function of the S1P-S1pr1 axis as master regulator of efficient thrombopoiesis and might raise new therapeutic options for patients with thrombocytopenia.


Depletion of ceramides with very long chain fatty acids causes defective skin permeability barrier function, and neonatal lethality in ELOVL4 deficient mice.

  • Wenmei Li‎ et al.
  • International journal of biological sciences‎
  • 2007‎

Very long chain fatty acids (VLCFA), either free or as components of glycerolipids and sphingolipids, are present in many organs. Elongation of very long chain fatty acids-4 (ELOVL4) belongs to a family of 6 members of putative fatty acid elongases that are involved in the formation of VLCFA. Mutations in ELOVL4 were found to be responsible for an autosomal dominant form of Stargardt's-like macular dystrophy (STGD3) in human. We have previously disrupted the mouse Elovl4 gene, and found that Elovl4+/- mice were developmentally normal, suggesting that haploinsufficiency of ELOVL4 is not a cause for the juvenile retinal degeneration in STGD3 patients. However, Elovl4-/- mice died within several hours of birth for unknown reason(s). To study functions of ELOVL4 further, we have explored the causes for the postnatal lethality in Elovl4-/- mice. Our data indicated that the mutant mice exhibited reduced thickness of the dermis, delayed differentiation of keratinocytes, and abnormal structure of the stratum corneum. We showed that all Elovl4-/- mice exhibited defective skin water permeability barrier function, leading to the early postnatal death. We further showed that the absence of ELOVL4 results in depletion in the epidermis of ceramides with omega-hydroxy very long chain fatty acids (> or = C28) and accumulation of ceramides with non omega-hydroxy fatty acids of C26, implicating C26 fatty acids as possible substrates of ELOVL4. These data demonstrate that ELOVL4 is required for VLCFA synthesis that is essential for water permeability barrier function of skin.


Identification of two lipid phosphatases that regulate sphingosine-1-phosphate cellular uptake and recycling.

  • Mari Kono‎ et al.
  • Journal of lipid research‎
  • 2022‎

Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that serves as a potent extracellular signaling molecule. Metabolic regulation of extracellular S1P levels impacts key cellular activities through altered S1P receptor signaling. Although the pathway through which S1P is degraded within the cell and thereby eliminated from reuse has been previously described, the mechanism used for S1P cellular uptake and the subsequent recycling of its sphingoid base into the sphingolipid synthesis pathway is not completely understood. To identify the genes within this S1P uptake and recycling pathway, we performed a genome-wide CRISPR/Cas9 KO screen using a positive-selection scheme with Shiga toxin, which binds a cell-surface glycosphingolipid receptor, globotriaosylceramide (Gb3), and causes lethality upon internalization. The screen was performed in HeLa cells with their sphingolipid de novo pathway disabled so that Gb3 cell-surface expression was dependent on salvage of the sphingoid base of S1P taken up from the medium. The screen identified a suite of genes necessary for S1P uptake and the recycling of its sphingoid base to synthesize Gb3, including two lipid phosphatases, PLPP3 (phospholipid phosphatase 3) and SGPP1 (S1P phosphatase 1). The results delineate a pathway in which plasma membrane-bound PLPP3 dephosphorylates extracellular S1P to sphingosine, which then enters cells and is rephosphorylated to S1P by the sphingosine kinases. This rephosphorylation step is important to regenerate intracellular S1P as a branch-point substrate that can be routed either for dephosphorylation to salvage sphingosine for recycling into complex sphingolipid synthesis or for degradation to remove it from the sphingolipid synthesis pathway.


A genome-wide CRISPR/Cas9 screen reveals that the aryl hydrocarbon receptor stimulates sphingolipid levels.

  • Saurav Majumder‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

Sphingolipid biosynthesis generates lipids for membranes and signaling that are crucial for many developmental and physiological processes. In some cases, large amounts of specific sphingolipids must be synthesized for specialized physiological functions, such as during axon myelination. How sphingolipid synthesis is regulated to fulfill these physiological requirements is not known. To identify genes that positively regulate membrane sphingolipid levels, here we employed a genome-wide CRISPR/Cas9 loss-of-function screen in HeLa cells using selection for resistance to Shiga toxin, which uses a plasma membrane-associated glycosphingolipid, globotriaosylceramide (Gb3), for its uptake. The screen identified several genes in the sphingolipid biosynthetic pathway that are required for Gb3 synthesis, and it also identified the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor widely involved in development and physiology, as being required for Gb3 biosynthesis. AHR bound and activated the gene promoter of serine palmitoyltransferase small subunit A (SPTSSA), which encodes a subunit of the serine palmitoyltransferase that catalyzes the first and rate-limiting step in de novo sphingolipid biosynthesis. AHR knockout HeLa cells exhibited significantly reduced levels of cell-surface Gb3, and both AHR knockout HeLa cells and tissues from Ahr knockout mice displayed decreased sphingolipid content as well as significantly reduced expression of several key genes in the sphingolipid biosynthetic pathway. The sciatic nerve of Ahr knockout mice exhibited both reduced ceramide content and reduced myelin thickness. These results indicate that AHR up-regulates sphingolipid levels and is important for full axon myelination, which requires elevated levels of membrane sphingolipids.


The sphingosine 1-phosphate receptor S1P₂ maintains the homeostasis of germinal center B cells and promotes niche confinement.

  • Jesse A Green‎ et al.
  • Nature immunology‎
  • 2011‎

Mice deficient in sphingosine 1-phosphate receptor type 2 (S1P(2)) develop diffuse large B cell lymphoma. However, the role of S1P(2) in normal germinal center (GC) physiology is unknown. Here we show that S1P(2)-deficient GC B cells outgrew their wild-type counterparts in chronically established GCs. We found that antagonism of the kinase Akt mediated by S1P(2) and its downstream mediators Gα(12), Gα(13) and p115RhoGEF regulated cell viability and was required for growth control in chronically proliferating GCs. Moreover, S1P(2) inhibited GC B cell responses to follicular chemoattractants and helped confine cells to the GC. In addition, S1P(2) overexpression promoted the centering of activated B cells in the follicle. We suggest that by inhibiting Akt activation and migration, S1P(2) helps restrict GC B cell survival and localization to an S1P-low niche at the follicle center.


Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway.

  • Kenneth C Loh‎ et al.
  • PloS one‎
  • 2012‎

Sphingosine-1-phosphate (S1P) activates a widely expressed family of G protein-coupled receptors, serves as a muscle trophic factor and activates muscle stem cells called satellite cells (SCs) through unknown mechanisms. Here we show that muscle injury induces dynamic changes in S1P signaling and metabolism in vivo. These changes include early and profound induction of the gene encoding the S1P biosynthetic enzyme SphK1, followed by induction of the catabolic enzyme sphingosine phosphate lyase (SPL) 3 days later. These changes correlate with a transient increase in circulating S1P levels after muscle injury. We show a specific requirement for SphK1 to support efficient muscle regeneration and SC proliferation and differentiation. Mdx mice, which serve as a model for muscular dystrophy (MD), were found to be S1P-deficient and exhibited muscle SPL upregulation, suggesting that S1P catabolism is enhanced in dystrophic muscle. Pharmacological SPL inhibition increased muscle S1P levels, improved mdx muscle regeneration and enhanced SC proliferation via S1P receptor 2 (S1PR2)-dependent inhibition of Rac1, thereby activating Signal Transducer and Activator of Transcription 3 (STAT3), a central player in inflammatory signaling. STAT3 activation resulted in p21 and p27 downregulation in a S1PR2-dependent fashion in myoblasts. Our findings suggest that S1P promotes SC progression through the cell cycle by repression of cell cycle inhibitors via S1PR2/STAT3-dependent signaling and that SPL inhibition may provide a therapeutic strategy for MD.


Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation.

  • Maria L Allende‎ et al.
  • Journal of lipid research‎
  • 2018‎

Sandhoff disease, one of the GM2 gangliosidoses, is a lysosomal storage disorder characterized by the absence of β-hexosaminidase A and B activity and the concomitant lysosomal accumulation of its substrate, GM2 ganglioside. It features catastrophic neurodegeneration and death in early childhood. How the lysosomal accumulation of ganglioside might affect the early development of the nervous system is not understood. Recently, cerebral organoids derived from induced pluripotent stem (iPS) cells have illuminated early developmental events altered by disease processes. To develop an early neurodevelopmental model of Sandhoff disease, we first generated iPS cells from the fibroblasts of an infantile Sandhoff disease patient, then corrected one of the mutant HEXB alleles in those iPS cells using CRISPR/Cas9 genome-editing technology, thereby creating isogenic controls. Next, we used the parental Sandhoff disease iPS cells and isogenic HEXB-corrected iPS cell clones to generate cerebral organoids that modeled the first trimester of neurodevelopment. The Sandhoff disease organoids, but not the HEXB-corrected organoids, accumulated GM2 ganglioside and exhibited increased size and cellular proliferation compared with the HEXB-corrected organoids. Whole-transcriptome analysis demonstrated that development was impaired in the Sandhoff disease organoids, suggesting that alterations in neuronal differentiation may occur during early development in the GM2 gangliosidoses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: