2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development.

  • Ehud Katz‎ et al.
  • Journal of experimental botany‎
  • 2011‎

Label-free LC-MS/MS-based shot-gun proteomics was used to quantify the differential protein synthesis and metabolite profiling in order to assess metabolic changes during the development of citrus fruits. Our results suggested the occurrence of a metabolic change during citrus fruit maturation, where the organic acid and amino acid accumulation seen during the early stages of development shifted into sugar synthesis during the later stage of citrus fruit development. The expression of invertases remained unchanged, while an invertase inhibitor was up-regulated towards maturation. The increased expression of sucrose-phosphate synthase and sucrose-6-phosphate phosphatase and the rapid sugar accumulation suggest that sucrose is also being synthesized in citrus juice sac cells during the later stage of fruit development.


Evolutionary origin and diversification of epidermal barrier proteins in amniotes.

  • Bettina Strasser‎ et al.
  • Molecular biology and evolution‎
  • 2014‎

The evolution of amniotes has involved major molecular innovations in the epidermis. In particular, distinct structural proteins that undergo covalent cross-linking during cornification of keratinocytes facilitate the formation of mechanically resilient superficial cell layers and help to limit water loss to the environment. Special modes of cornification generate amniote-specific skin appendages such as claws, feathers, and hair. In mammals, many protein substrates of cornification are encoded by a cluster of genes, termed the epidermal differentiation complex (EDC). To provide a basis for hypotheses about the evolution of cornification proteins, we screened for homologs of the EDC in non-mammalian vertebrates. By comparative genomics, de novo gene prediction and gene expression analyses, we show that, in contrast to fish and amphibians, the chicken and the green anole lizard have EDC homologs comprising genes that are specifically expressed in the epidermis and in skin appendages. Our data suggest that an important component of the cornified protein envelope of mammalian keratinocytes, that is, loricrin, has originated in a common ancestor of modern amniotes, perhaps during the acquisition of a fully terrestrial lifestyle. Moreover, we provide evidence that the sauropsid-specific beta-keratins have evolved as a subclass of EDC genes. Based on the comprehensive characterization of the arrangement, exon-intron structures and conserved sequence elements of EDC genes, we propose new scenarios for the evolutionary origin of epidermal barrier proteins via fusion of neighboring S100A and peptidoglycan recognition protein genes, subsequent loss of exons and highly divergent sequence evolution.


Ser 524 is a phosphorylation site in MUTYH and Ser 524 mutations alter 8-oxoguanine (OG): a mismatch recognition.

  • Sucharita Kundu‎ et al.
  • DNA repair‎
  • 2010‎

MUTYH-associated polyposis (MAP) is a colorectal cancer predisposition syndrome that is caused by inherited biallelic mutations in the base excision repair (BER) gene, MUTYH. MUTYH is a DNA glycosylase that removes adenine (A) misinserted opposite 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG). In this work, wild type (WT) MUTYH overexpressed using a baculovirus-driven insect cell expression system (BEVS) provided significantly higher levels of enzyme compared to bacterial overexpression. The isolated MUTYH enzyme was analyzed for potential post-translational modifications using mass spectrometry. An in vivo phosphorylation site was validated at Serine 524, which is located in the C-terminal OG recognition domain within the proliferating cell nuclear antigen (PCNA) binding region. Characterization of the phosphomimetic (S524D) and phosphoablating (S524A) mutants together with the observation that Ser 524 can be phosphorylated suggest that this residue may play an important regulatory role in vivo by altering stability and OG:A mismatch affinity.


Differentiating inbred mouse strains from each other and those with single gene mutations using hair proteomics.

  • Robert H Rice‎ et al.
  • PloS one‎
  • 2012‎

Mutant laboratory mice with distinctive hair phenotypes are useful for identifying genes responsible for hair diseases. The work presented here demonstrates that shotgun proteomic profiling can distinguish hair shafts from different inbred mouse strains. For this purpose, analyzing the total hair shaft provided better discrimination than analyzing the isolated solubilized and particulate (cross-linked) fractions. Over 100 proteins exhibited significant differences among the 11 strains and 5 mutant stocks across the wide spectrum of strains surveyed. Effects on the profile of single gene mutations causing hair shaft defects were profound. Since the hair shaft provides a discrete sampling of the species proteome, with constituents serving important functions in epidermal appendages and throughout the body, this work provides a foundation for non-invasive diagnosis of genetic diseases of hair and perhaps other tissues.


A label-free differential quantitative mass spectrometry method for the characterization and identification of protein changes during citrus fruit development.

  • Ehud Katz‎ et al.
  • Proteome science‎
  • 2010‎

Citrus is one of the most important and widely grown commodity fruit crops. In this study a label-free LC-MS/MS based shot-gun proteomics approach was taken to explore three main stages of citrus fruit development. These approaches were used to identify and evaluate changes occurring in juice sac cells in various metabolic pathways affecting citrus fruit development and quality.


Human hair shaft proteomic profiling: individual differences, site specificity and cuticle analysis.

  • Chelsea N Laatsch‎ et al.
  • PeerJ‎
  • 2014‎

Hair from different individuals can be distinguished by physical properties. Although some data exist on other species, examination of the individual molecular differences within the human hair shaft has not been thoroughly investigated. Shotgun proteomic analysis revealed considerable variation in profile among samples from Caucasian, African-American, Kenyan and Korean subjects. Within these ethnic groups, prominent keratin proteins served to distinguish individual profiles. Differences between ethnic groups, less marked, relied to a large extent on levels of keratin associated proteins. In samples from Caucasian subjects, hair shafts from axillary, beard, pubic and scalp regions exhibited distinguishable profiles, with the last being most different from the others. Finally, the profile of isolated hair cuticle cells was distinguished from that of total hair shaft by levels of more than 20 proteins, the majority of which were prominent keratins. The cuticle also exhibited relatively high levels of epidermal transglutaminase (TGM3), accounting for its observed low degree of protein extraction by denaturants. In addition to providing insight into hair structure, present findings may lead to improvements in differentiating hair from various ethnic origins and offer an approach to extending use of hair in crime scene evidence for distinguishing among individuals.


Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1.

  • A Marijke Keestra‎ et al.
  • Nature‎
  • 2013‎

Our innate immune system distinguishes microbes from self by detecting conserved pathogen-associated molecular patterns. However, these are produced by all microbes, regardless of their pathogenic potential. To distinguish virulent microbes from those with lower disease-causing potential the innate immune system detects conserved pathogen-induced processes, such as the presence of microbial products in the host cytosol, by mechanisms that are not fully resolved. Here we show that NOD1 senses cytosolic microbial products by monitoring the activation state of small Rho GTPases. Activation of RAC1 and CDC42 by bacterial delivery or ectopic expression of SopE, a virulence factor of the enteric pathogen Salmonella, triggered the NOD1 signalling pathway, with consequent RIP2 (also known as RIPK2)-mediated induction of NF-κB-dependent inflammatory responses. Similarly, activation of the NOD1 signalling pathway by peptidoglycan required RAC1 activity. Furthermore, constitutively active forms of RAC1, CDC42 and RHOA activated the NOD1 signalling pathway. Our data identify the activation of small Rho GTPases as a pathogen-induced process sensed through the NOD1 signalling pathway.


AXR1-ECR1 and AXL1-ECR1 heterodimeric RUB-activating enzymes diverge in function in Arabidopsis thaliana.

  • Sara K Hotton‎ et al.
  • Plant molecular biology‎
  • 2011‎

RELATED TO UBIQUITIN (RUB) modification of CULLIN (CUL) subunits of the CUL-RING ubiquitin E3 ligase (CRL) superfamily regulates CRL ubiquitylation activity. RUB modification requires E1 and E2 enzymes that are analogous to, but distinct from, those activities required for UBIQUITIN (UBQ) attachment. Gene duplications are widespread in angiosperms, and in line with this observation, components of the RUB conjugation pathway are found in multiples in Arabidopsis. To further examine the extent of redundancy within the RUB pathway, we undertook biochemical and genetic characterizations of one such duplication event- the duplication of the genes encoding a subunit of the RUB E1 into AUXIN RESISTANT1 (AXR1) and AXR1-LIKE1 (AXL1). In vitro, the two proteins have similar abilities to function with E1 C-TERMINAL-RELATED1 (ECR1) in catalyzing RUB1 activation and RUB1-ECR1 thioester formation. Using mass spectrometry, endogenous AXR1 and AXL1 proteins were found in complex with 3HA-RUB1, suggesting that AXR1 and AXL1 exist in parallel RUB E1 complexes in Arabidopsis. In contrast, AXR1 and AXL1 differ in ability to correct phenotypic defects in axr1-30, a severe loss-of-function AXR1 mutant, when the respective coding sequences are expressed from the same promoter, suggesting differential in vivo functions. These results suggest that while both proteins function in the RUB pathway and are biochemically similar in RUB-ECR1 thioester formation, they are not functionally equivalent.


Distinguishing ichthyoses by protein profiling.

  • Robert H Rice‎ et al.
  • PloS one‎
  • 2013‎

To explore the usefulness of protein profiling for characterization of ichthyoses, we here determined the profile of human epidermal stratum corneum by shotgun proteomics. Samples were analyzed after collection on tape circles from six anatomic sites (forearm, palm, lower leg, forehead, abdomen, upper back), demonstrating site-specific differences in profiles. Additional samples were collected from the forearms of subjects with ichthyosis vulgaris (filaggrin (FLG) deficiency), recessive X-linked ichthyosis (steroid sulfatase (STS) deficiency) and autosomal recessive congenital ichthyosis type lamellar ichthyosis (transglutaminase 1 (TGM1) deficiency). The ichthyosis protein expression patterns were readily distinguishable from each other and from phenotypically normal epidermis. In general, the degree of departure from normal was lower from ichthyosis vulgaris than from lamellar ichthyosis, parallel to the severity of the phenotype. Analysis of samples from families with ichthyosis vulgaris and concomitant modifying gene mutations (STS deficiency, GJB2 deficiency) permitted correlation of alterations in protein profile with more complex genetic constellations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: