Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

ID1 is a functional marker for intestinal stem and progenitor cells required for normal response to injury.

  • Ning Zhang‎ et al.
  • Stem cell reports‎
  • 2014‎

LGR5 and BMI1 mark intestinal stem cells in crypt base columnar cells and +4 position cells, respectively, but characterization of functional markers in these cell populations is limited. ID1 maintains the stem cell potential of embryonic, neural, and long-term repopulating hematopoietic stem cells. Here, we show in both human and mouse intestine that ID1 is expressed in cycling columnar cells, +4 position cells, and transit-amplifying cells in the crypt. Lineage tracing revealed ID1+ cells to be self-renewing, multipotent stem/progenitor cells that are responsible for the long-term renewal of the intestinal epithelium. Single ID1+ cells can generate long-lived organoids resembling mature intestinal epithelium. Complete knockout of Id1 or selective deletion of Id1 in intestinal epithelium or in LGR5+ stem cells sensitizes mice to chemical-induced colon injury. These experiments identify ID1 as a marker for intestinal stem/progenitor cells and demonstrate a role for ID1 in maintaining the potential for repair in response to colonic injury.


Activation status of Wnt/ß-catenin signaling in normal and neoplastic breast tissues: relationship to HER2/neu expression in human and mouse.

  • Sara Khalil‎ et al.
  • PloS one‎
  • 2012‎

Wnt/ß-catenin signaling is strongly implicated in neoplasia, but the role of this pathway in human breast cancer has been controversial. Here, we examined Wnt/ß-catenin pathway activation as a function of breast cancer progression, and tested for a relationship with HER2/neu expression, using a human tissue microarray comprising benign breast tissues, ductal carcinoma in situ (DCIS), and invasive carcinomas. Cores were scored for membranous ß-catenin, a key functional component of adherens junctions, and for nucleocytoplasmic ß-catenin, a hallmark of Wnt/ß-catenin pathway activation. Only 82% of benign samples exhibited membrane-associated ß-catenin, indicating a finite frequency of false-negative staining. The frequency of membrane positivity was similar in DCIS samples, but was significantly reduced in carcinomas (45%, P<0.001), consistent with loss of adherens junctions during acquisition of invasiveness. Negative membrane status in cancers correlated with higher grade (P = 0.04) and estrogen receptor-negative status (P = 0.03), both indices of poor prognosis. Unexpectedly, a substantial frequency of nucleocytoplasmic ß-catenin was observed in benign breast tissues (36%), similar to that in carcinomas (35%). Positive-staining basal nuclei observed in benign breast may identify putative stem cells. An increased frequency of nucleocytoplasmic ß-catenin was observed in DCIS tumors (56%), suggesting that pathway activation may be an early event in human breast neoplasia. A correlation was observed between HER2/neu expression and nucleocytoplasmic ß-catenin in node-positive carcinomas (P = 0.02). Furthermore, cytoplasmic ß-catenin was detected in HER2/neu-induced mouse mammary tumors. The Axin2(NLSlacZ) mouse strain, a previously validated reporter of mammary Wnt/ß-catenin signaling, was utilized to define in vivo transcriptional consequences of HER2/neu-induced ß-catenin accumulation. Discrete hyperplastic foci observed in mammary glands from bigenic MMTV/neu, Axin2(NLSlacZ) mice, highlighted by robust ß-catenin/TCF signaling, likely represent the earliest stage of mammary intraepithelial neoplasia in MMTV/neu mice. Our study thus provides provocative evidence for Wnt/ß-catenin signaling as an early, HER2/neu-inducible event in breast neoplasia.


Reciprocal impacts of telomerase activity and ADRN/MES differentiation state in neuroblastoma tumor biology.

  • Eun Young Yu‎ et al.
  • Communications biology‎
  • 2021‎

Telomere maintenance and tumor cell differentiation have been separately implicated in neuroblastoma malignancy. Their mechanistic connection is unclear. We analyzed neuroblastoma cell lines and morphologic subclones representing the adrenergic (ADRN) and mesenchymal (MES) differentiation states and uncovered sharp differences in their telomere protein and telomerase activity levels. Pharmacologic conversion of ADRN into MES cells elicited consistent and robust changes in the expression of telomere-related proteins. Conversely, stringent down-regulation of telomerase activity triggers the differentiation of ADRN into MES cells, which was reversible upon telomerase up-regulation. Interestingly, the MES differentiation state is associated with elevated levels of innate immunity factors, including key components of the DNA-sensing pathway. Accordingly, MES but not ADRN cells can mount a robust response to viral infections in vitro. A gene expression signature based on telomere and cell lineage-related factors can cluster neuroblastoma tumor samples into predominantly ADRN or MES-like groups, with distinct clinical outcomes. Our findings establish a strong mechanistic connection between telomere and differentiation and suggest that manipulating telomeres may suppress malignancy not only by limiting the tumor growth potential but also by inducing tumor cell differentiation and altering its immunogenicity.


Effects of obesity on breast aromatase expression and systemic metabo-inflammation in women with BRCA1 or BRCA2 mutations.

  • Neil M Iyengar‎ et al.
  • NPJ breast cancer‎
  • 2021‎

Obesity is associated with an increased risk of breast cancer in post-menopausal women and decreased risk in pre-menopausal women. Conversely, in BRCA1/2 mutation carriers, pre-menopausal obesity is associated with early-onset breast cancer. Here we show that obese, pre-menopausal BRCA1/2 mutation carriers have increased levels of aromatase and inflammation in the breast, as occurs in post-menopausal women. In a prospective cohort study of 141 women with germline BRCA1 (n = 74) or BRCA2 (n = 67) mutations, leptin, and aromatase expression were higher in the breast tissue of obese versus lean individuals (P < 0.05). Obesity was associated with breast white adipose tissue inflammation, which correlated with breast aromatase levels (P < 0.01). Circulating C-reactive protein, interleukin-6, and leptin positively correlated with body mass index and breast aromatase levels, whereas negative correlations were observed for adiponectin and sex hormone-binding globulin (P < 0.05). These findings could help explain the increased risk of early-onset breast cancer in obese BRCA1/2 mutation carriers.


Effects of Rapid Weight Loss on Systemic and Adipose Tissue Inflammation and Metabolism in Obese Postmenopausal Women.

  • José O Alemán‎ et al.
  • Journal of the Endocrine Society‎
  • 2017‎

Obesity is associated with subclinical white adipose tissue inflammation, as defined by the presence of crown-like structures (CLSs) consisting of dead or dying adipocytes encircled by macrophages. In humans, bariatric surgery-induced weight loss leads to a decrease in CLSs, but the effects of rapid diet-induced weight loss on CLSs and metabolism are unclear.


Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting.

  • Huanhuan Joyce Chen‎ et al.
  • Nature biotechnology‎
  • 2015‎

Current orthotopic xenograft models of human colorectal cancer (CRC) require surgery and do not robustly form metastases in the liver, the most common site clinically. CCR9 traffics lymphocytes to intestine and colorectum. We engineered use of the chemokine receptor CCR9 in CRC cell lines and patient-derived cells to create primary gastrointestinal (GI) tumors in immunodeficient mice by tail-vein injection rather than surgery. The tumors metastasize inducibly and robustly to the liver. Metastases have higher DKK4 and NOTCH signaling levels and are more chemoresistant than paired subcutaneous xenografts. Using this approach, we generated 17 chemokine-targeted mouse models (CTMMs) that recapitulate the majority of common human somatic CRC mutations. We also show that primary tumors can be modeled in immunocompetent mice by microinjecting CCR9-expressing cancer cell lines into early-stage mouse blastocysts, which induces central immune tolerance. We expect that CTMMs will facilitate investigation of the biology of CRC metastasis and drug screening.


Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity.

  • Irina Leonardi‎ et al.
  • Cell‎
  • 2022‎

Fungal communities (the mycobiota) are an integral part of the gut microbiota, and the disruption of their integrity contributes to local and gut-distal pathologies. Yet, the mechanisms by which intestinal fungi promote homeostasis remain unclear. We characterized the mycobiota biogeography along the gastrointestinal tract and identified a subset of fungi associated with the intestinal mucosa of mice and humans. Mucosa-associated fungi (MAF) reinforced intestinal epithelial function and protected mice against intestinal injury and bacterial infection. Notably, intestinal colonization with a defined consortium of MAF promoted social behavior in mice. The gut-local effects on barrier function were dependent on IL-22 production by CD4+ T helper cells, whereas the effects on social behavior were mediated through IL-17R-dependent signaling in neurons. Thus, the spatial organization of the gut mycobiota is associated with host-protective immunity and epithelial barrier function and might be a driver of the neuroimmune modulation of mouse behavior through complementary Type 17 immune mechanisms.


Autopsy Findings in 32 Patients with COVID-19: A Single-Institution Experience.

  • Sarah S Elsoukkary‎ et al.
  • Pathobiology : journal of immunopathology, molecular and cellular biology‎
  • 2021‎

A novel coronavirus, SARS-CoV-2, was identified in Wuhan, China in late 2019. This virus rapidly spread around the world causing disease ranging from minimal symptoms to severe pneumonia, which was termed coronavirus disease (i.e., COVID). Postmortem examination is a valuable tool for studying the pathobiology of this new infection.


LTX-315-enabled, radiotherapy-boosted immunotherapeutic control of breast cancer by NK cells.

  • Takahiro Yamazaki‎ et al.
  • Oncoimmunology‎
  • 2021‎

LTX-315 is a nonameric oncolytic peptide in early clinical development for the treatment of solid malignancies. Preclinical and clinical evidence indicates that the anticancer properties of LTX-315 originate not only from its ability to selectively kill cancer cells, but also from its capacity to promote tumor-targeting immune responses. Here, we investigated the therapeutic activity and immunological correlates of intratumoral LTX-315 administration in three syngeneic mouse models of breast carcinoma, with a focus on the identification of possible combinatorial partners. We found that breast cancer control by LTX-315 is accompanied by a reconfiguration of the immunological tumor microenvironment that supports the activation of anticancer immunity and can be boosted by radiation therapy. Mechanistically, depletion of natural killer (NK) cells compromised the capacity of LTX-315 to limit local and systemic disease progression in a mouse model of triple-negative breast cancer, and to extend the survival of mice bearing hormone-accelerated, carcinogen-driven endogenous mammary carcinomas. Altogether, our data suggest that LTX-315 controls breast cancer progression by engaging NK cell-dependent immunity.


Cellular senescence in the response of HR+ breast cancer to radiotherapy and CDK4/6 inhibitors.

  • Vanessa Klapp‎ et al.
  • Journal of translational medicine‎
  • 2023‎

Preclinical evidence from us and others demonstrates that the anticancer effects of cyclin-dependent kinase 4/6 (CDK4/6) inhibitors can be enhanced with focal radiation therapy (RT), but only when RT is delivered prior to (rather than after) CDK4/6 inhibition. Depending on tumor model, cellular senescence (an irreversible proliferative arrest that is associated with the secretion of numerous bioactive factors) has been attributed beneficial or detrimental effects on response to treatment. As both RT and CDK4/6 inhibitors elicit cellular senescence, we hypothesized that a differential accumulation of senescent cells in the tumor microenvironment could explain such an observation, i.e., the inferiority of CDK4/6 inhibition with palbociclib (P) followed by RT (P→RT) as compared to RT followed by palbociclib (RT→P).


Immunotherapy targeting different immune compartments in combination with radiation therapy induces regression of resistant tumors.

  • Nils-Petter Rudqvist‎ et al.
  • Nature communications‎
  • 2023‎

Radiation therapy (RT) increases tumor response to CTLA-4 inhibition (CTLA4i) in mice and in some patients, yet deep responses are rare. To identify rational combinations of immunotherapy to improve responses we use models of triple negative breast cancer highly resistant to immunotherapy in female mice. We find that CTLA4i promotes the expansion of CD4+ T helper cells, whereas RT enhances T cell clonality and enriches for CD8+ T cells with an exhausted phenotype. Combination therapy decreases regulatory CD4+ T cells and increases effector memory, early activation and precursor exhausted CD8+ T cells. A combined gene signature comprising these three CD8+ T cell clusters is associated with survival in patients. Here we show that targeting additional immune checkpoints expressed by intratumoral T cells, including PD1, is not effective, whereas CD40 agonist therapy recruits resistant tumors into responding to the combination of RT and CTLA4i, indicating the need to target different immune compartments.


A randomized phase II trial of MR-guided prostate stereotactic body radiotherapy administered in 5 or 2 fractions for localized prostate cancer (FORT).

  • Sydney Wolfe‎ et al.
  • BMC cancer‎
  • 2023‎

Ultra-hypofractionated regimens for definitive prostate cancer (PCa) radiotherapy are increasingly utilized due in part to promising safety and efficacy data complemented by greater patient convenience from a treatment course requiring fewer sessions. As such, stereotactic body radiation therapy (SBRT) is rapidly emerging as a standard definitive treatment option for patients with localized PCa. The commercially available magnetic resonance linear accelerator (MR-LINAC) integrates MR imaging with radiation delivery, providing several theoretical advantages compared to computed tomography (CT)-guided radiotherapy. MR-LINAC technology facilitates improved visualization of the prostate, real-time intrafraction tracking of prostate and organs-at-risk (OAR), and online adaptive planning to account for target movement and anatomical changes. These features enable reduced treatment volume margins and improved sparing of surrounding OAR. The theoretical advantages of MR-guided radiotherapy (MRgRT) have recently been shown to significantly reduce rates of acute grade ≥ 2 GU toxicities as reported in the prospective randomized phase III MIRAGE trial, which compared MR-LINAC vs CT-based 5 fraction SBRT in patients with localized PCa (Kishan et al. JAMA Oncol 9:365-373, 2023). Thus, MR-LINAC SBRT-utilizing potentially fewer treatments-is warranted and clinically relevant for men with low or intermediate risk PCa electing for radiotherapy as definitive treatment.


Radiotherapy induces responses of lung cancer to CTLA-4 blockade.

  • Silvia C Formenti‎ et al.
  • Nature medicine‎
  • 2018‎

Focal radiation therapy enhances systemic responses to anti-CTLA-4 antibodies in preclinical studies and in some patients with melanoma1-3, but its efficacy in inducing systemic responses (abscopal responses) against tumors unresponsive to CTLA-4 blockade remained uncertain. Radiation therapy promotes the activation of anti-tumor T cells, an effect dependent on type I interferon induction in the irradiated tumor4-6. The latter is essential for achieving abscopal responses in murine cancers6. The mechanisms underlying abscopal responses in patients treated with radiation therapy and CTLA-4 blockade remain unclear. Here we report that radiation therapy and CTLA-4 blockade induced systemic anti-tumor T cells in chemo-refractory metastatic non-small-cell lung cancer (NSCLC), where anti-CTLA-4 antibodies had failed to demonstrate significant efficacy alone or in combination with chemotherapy7,8. Objective responses were observed in 18% of enrolled patients, and 31% had disease control. Increased serum interferon-β after radiation and early dynamic changes of blood T cell clones were the strongest response predictors, confirming preclinical mechanistic data. Functional analysis in one responding patient showed the rapid in vivo expansion of CD8 T cells recognizing a neoantigen encoded in a gene upregulated by radiation, supporting the hypothesis that one explanation for the abscopal response is radiation-induced exposure of immunogenic mutations to the immune system.


FibroSURE as a noninvasive marker of liver fibrosis and inflammation in chronic hepatitis B.

  • Marija Zeremski‎ et al.
  • BMC gastroenterology‎
  • 2014‎

Noninvasive markers of liver fibrosis have not been extensively studied in patients with chronic hepatitis B virus (HBV) infection. Our aim was to evaluate the capacity of FibroSURE, one of the two noninvasive fibrosis indices commercially available in the United States, to identify HBV infected patients with moderate to severe fibrosis.


Biologic phenotyping of the human small airway epithelial response to cigarette smoking.

  • Ann E Tilley‎ et al.
  • PloS one‎
  • 2011‎

The first changes associated with smoking are in the small airway epithelium (SAE). Given that smoking alters SAE gene expression, but only a fraction of smokers develop chronic obstructive pulmonary disease (COPD), we hypothesized that assessment of SAE genome-wide gene expression would permit biologic phenotyping of the smoking response, and that a subset of healthy smokers would have a "COPD-like" SAE transcriptome.


Dietary Fructose Alters the Composition, Localization, and Metabolism of Gut Microbiota in Association With Worsening Colitis.

  • David C Montrose‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2021‎

The incidence of inflammatory bowel diseases has increased over the last half century, suggesting a role for dietary factors. Fructose consumption has increased in recent years. Recently, a high fructose diet (HFrD) was shown to enhance dextran sodium sulfate (DSS)-induced colitis in mice. The primary objectives of the current study were to elucidate the mechanism(s) underlying the pro-colitic effects of dietary fructose and to determine whether this effect occurs in both microbially driven and genetic models of colitis.


Integrated clinical and genomic analysis identifies driver events and molecular evolution of colitis-associated cancers.

  • Walid K Chatila‎ et al.
  • Nature communications‎
  • 2023‎

Inflammation has long been recognized to contribute to cancer development, particularly across the gastrointestinal tract. Patients with inflammatory bowel disease have an increased risk for bowel cancers, and it has been posited that a field of genetic changes may underlie this risk. Here, we define the clinical features, genomic landscape, and germline alterations in 174 patients with colitis-associated cancers and sequenced 29 synchronous or isolated dysplasia. TP53 alterations, an early and highly recurrent event in colitis-associated cancers, occur in half of dysplasia, largely as convergent evolution of independent events. Wnt pathway alterations are infrequent, and our data suggest transcriptional rewiring away from Wnt. Sequencing of multiple dysplasia/cancer lesions from mouse models and patients demonstrates rare shared alterations between lesions. These findings suggest neoplastic bowel lesions developing in a background of inflammation experience lineage plasticity away from Wnt activation early during tumorigenesis and largely occur as genetically independent events.


Anti-tumor effects of an ID antagonist with no observed acquired resistance.

  • Paulina M Wojnarowicz‎ et al.
  • NPJ breast cancer‎
  • 2021‎

ID proteins are helix-loop-helix (HLH) transcriptional regulators frequently overexpressed in cancer. ID proteins inhibit basic-HLH transcription factors often blocking differentiation and sustaining proliferation. A small-molecule, AGX51, targets ID proteins for degradation and impairs ocular neovascularization in mouse models. Here we show that AGX51 treatment of cancer cell lines impairs cell growth and viability that results from an increase in reactive oxygen species (ROS) production upon ID degradation. In mouse models, AGX51 treatment suppresses breast cancer colonization in the lung, regresses the growth of paclitaxel-resistant breast tumors when combined with paclitaxel and reduces tumor burden in sporadic colorectal neoplasia. Furthermore, in cells and mice, we fail to observe acquired resistance to AGX51 likely the result of the inability to mutate the binding pocket without loss of ID function and efficient degradation of the ID proteins. Thus, AGX51 is a first-in-class compound that antagonizes ID proteins, shows strong anti-tumor effects and may be further developed for the management of multiple cancers.


Obesity promotes breast epithelium DNA damage in women carrying a germline mutation in BRCA1 or BRCA2.

  • Priya Bhardwaj‎ et al.
  • Science translational medicine‎
  • 2023‎

Obesity, defined as a body mass index (BMI) ≥ 30, is an established risk factor for breast cancer among women in the general population after menopause. Whether elevated BMI is a risk factor for women with a germline mutation in BRCA1 or BRCA2 is less clear because of inconsistent findings from epidemiological studies and a lack of mechanistic studies in this population. Here, we show that DNA damage in normal breast epithelia of women carrying a BRCA mutation is positively correlated with BMI and with biomarkers of metabolic dysfunction. In addition, RNA sequencing showed obesity-associated alterations to the breast adipose microenvironment of BRCA mutation carriers, including activation of estrogen biosynthesis, which affected neighboring breast epithelial cells. In breast tissue explants cultured from women carrying a BRCA mutation, we found that blockade of estrogen biosynthesis or estrogen receptor activity decreased DNA damage. Additional obesity-associated factors, including leptin and insulin, increased DNA damage in human BRCA heterozygous epithelial cells, and inhibiting the signaling of these factors with a leptin-neutralizing antibody or PI3K inhibitor, respectively, decreased DNA damage. Furthermore, we show that increased adiposity was associated with mammary gland DNA damage and increased penetrance of mammary tumors in Brca1+/- mice. Overall, our results provide mechanistic evidence in support of a link between elevated BMI and breast cancer development in BRCA mutation carriers. This suggests that maintaining a lower body weight or pharmacologically targeting estrogen or metabolic dysfunction may reduce the risk of breast cancer in this population.


A reversible epigenetic memory of inflammatory injury controls lineage plasticity and tumor initiation in the mouse pancreas.

  • David J Falvo‎ et al.
  • Developmental cell‎
  • 2023‎

Inflammation is essential to the disruption of tissue homeostasis and can destabilize the identity of lineage-committed epithelial cells. Here, we employ lineage-traced mouse models, single-cell transcriptomic and chromatin analyses, and CUT&TAG to identify an epigenetic memory of inflammatory injury in the pancreatic acinar cell compartment. Despite resolution of pancreatitis, our data show that acinar cells fail to return to their molecular baseline, with retention of elevated chromatin accessibility and H3K4me1 at metaplasia genes, such that memory represents an incomplete cell fate decision. In vivo, we find this epigenetic memory controls lineage plasticity, with diminished metaplasia in response to a second insult but increased tumorigenesis with an oncogenic Kras mutation. The lowered threshold for oncogenic transformation, in turn, can be restored by blockade of MAPK signaling. Together, we define the chromatin dynamics, molecular encoding, and recall of a prolonged epigenetic memory of inflammatory injury that impacts future responses but remains reversible.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: