Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

ID1 is a functional marker for intestinal stem and progenitor cells required for normal response to injury.

  • Ning Zhang‎ et al.
  • Stem cell reports‎
  • 2014‎

LGR5 and BMI1 mark intestinal stem cells in crypt base columnar cells and +4 position cells, respectively, but characterization of functional markers in these cell populations is limited. ID1 maintains the stem cell potential of embryonic, neural, and long-term repopulating hematopoietic stem cells. Here, we show in both human and mouse intestine that ID1 is expressed in cycling columnar cells, +4 position cells, and transit-amplifying cells in the crypt. Lineage tracing revealed ID1+ cells to be self-renewing, multipotent stem/progenitor cells that are responsible for the long-term renewal of the intestinal epithelium. Single ID1+ cells can generate long-lived organoids resembling mature intestinal epithelium. Complete knockout of Id1 or selective deletion of Id1 in intestinal epithelium or in LGR5+ stem cells sensitizes mice to chemical-induced colon injury. These experiments identify ID1 as a marker for intestinal stem/progenitor cells and demonstrate a role for ID1 in maintaining the potential for repair in response to colonic injury.


A kinase-independent function of AKT promotes cancer cell survival.

  • Igor Vivanco‎ et al.
  • eLife‎
  • 2014‎

The serine-threonine kinase AKT regulates proliferation and survival by phosphorylating a network of protein substrates. In this study, we describe a kinase-independent function of AKT. In cancer cells harboring gain-of-function alterations in MET, HER2, or Phosphatidyl-Inositol-3-Kinase (PI3K), catalytically inactive AKT (K179M) protected from drug induced cell death in a PH-domain dependent manner. An AKT kinase domain mutant found in human melanoma (G161V) lacked enzymatic activity in vitro and in AKT1/AKT2 double knockout cells, but promoted growth factor independent survival of primary human melanocytes. ATP-competitive AKT inhibitors failed to block the kinase-independent function of AKT, a liability that limits their effectiveness compared to allosteric AKT inhibitors. Our results broaden the current view of AKT function and have important implications for the development of AKT inhibitors for cancer.


Vorasidenib (AG-881): A First-in-Class, Brain-Penetrant Dual Inhibitor of Mutant IDH1 and 2 for Treatment of Glioma.

  • Zenon Konteatis‎ et al.
  • ACS medicinal chemistry letters‎
  • 2020‎

Inhibitors of mutant isocitrate dehydrogenase (mIDH) 1 and 2 cancer-associated enzymes prevent the accumulation of the oncometabolite d-2-hydroxyglutarate (2-HG) and are under clinical investigation for the treatment of several cancers harboring an IDH mutation. Herein, we describe the discovery of vorasidenib (AG-881), a potent, oral, brain-penetrant dual inhibitor of both mIDH1 and mIDH2. X-ray cocrystal structures allowed us to characterize the compound binding site, leading to an understanding of the dual mutant inhibition. Furthermore, vorasidenib penetrates the brain of several preclinical species and inhibits 2-HG production in glioma tissue by >97% in an orthotopic glioma mouse model. Vorasidenib represents a novel dual mIDH1/2 inhibitor and is currently in clinical development for the treatment of low-grade mIDH glioma.


Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity.

  • Irina Leonardi‎ et al.
  • Cell‎
  • 2022‎

Fungal communities (the mycobiota) are an integral part of the gut microbiota, and the disruption of their integrity contributes to local and gut-distal pathologies. Yet, the mechanisms by which intestinal fungi promote homeostasis remain unclear. We characterized the mycobiota biogeography along the gastrointestinal tract and identified a subset of fungi associated with the intestinal mucosa of mice and humans. Mucosa-associated fungi (MAF) reinforced intestinal epithelial function and protected mice against intestinal injury and bacterial infection. Notably, intestinal colonization with a defined consortium of MAF promoted social behavior in mice. The gut-local effects on barrier function were dependent on IL-22 production by CD4+ T helper cells, whereas the effects on social behavior were mediated through IL-17R-dependent signaling in neurons. Thus, the spatial organization of the gut mycobiota is associated with host-protective immunity and epithelial barrier function and might be a driver of the neuroimmune modulation of mouse behavior through complementary Type 17 immune mechanisms.


Autopsy Findings in 32 Patients with COVID-19: A Single-Institution Experience.

  • Sarah S Elsoukkary‎ et al.
  • Pathobiology : journal of immunopathology, molecular and cellular biology‎
  • 2021‎

A novel coronavirus, SARS-CoV-2, was identified in Wuhan, China in late 2019. This virus rapidly spread around the world causing disease ranging from minimal symptoms to severe pneumonia, which was termed coronavirus disease (i.e., COVID). Postmortem examination is a valuable tool for studying the pathobiology of this new infection.


FibroSURE as a noninvasive marker of liver fibrosis and inflammation in chronic hepatitis B.

  • Marija Zeremski‎ et al.
  • BMC gastroenterology‎
  • 2014‎

Noninvasive markers of liver fibrosis have not been extensively studied in patients with chronic hepatitis B virus (HBV) infection. Our aim was to evaluate the capacity of FibroSURE, one of the two noninvasive fibrosis indices commercially available in the United States, to identify HBV infected patients with moderate to severe fibrosis.


EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer.

  • Barbara Oldrini‎ et al.
  • Nature communications‎
  • 2017‎

Transport of macromolecules through the nuclear pore by importins and exportins plays a critical role in the spatial regulation of protein activity. How cancer cells co-opt this process to promote tumorigenesis remains unclear. The epidermal growth factor receptor (EGFR) plays a critical role in normal development and in human cancer. Here we describe a mechanism of EGFR regulation through the importin β family member RAN-binding protein 6 (RanBP6), a protein of hitherto unknown functions. We show that RanBP6 silencing impairs nuclear translocation of signal transducer and activator of transcription 3 (STAT3), reduces STAT3 binding to the EGFR promoter, results in transcriptional derepression of EGFR, and increased EGFR pathway output. Focal deletions of the RanBP6 locus on chromosome 9p were found in a subset of glioblastoma (GBM) and silencing of RanBP6 promoted glioma growth in vivo. Our results provide an example of EGFR deregulation in cancer through silencing of components of the nuclear import pathway.


Integrated clinical and genomic analysis identifies driver events and molecular evolution of colitis-associated cancers.

  • Walid K Chatila‎ et al.
  • Nature communications‎
  • 2023‎

Inflammation has long been recognized to contribute to cancer development, particularly across the gastrointestinal tract. Patients with inflammatory bowel disease have an increased risk for bowel cancers, and it has been posited that a field of genetic changes may underlie this risk. Here, we define the clinical features, genomic landscape, and germline alterations in 174 patients with colitis-associated cancers and sequenced 29 synchronous or isolated dysplasia. TP53 alterations, an early and highly recurrent event in colitis-associated cancers, occur in half of dysplasia, largely as convergent evolution of independent events. Wnt pathway alterations are infrequent, and our data suggest transcriptional rewiring away from Wnt. Sequencing of multiple dysplasia/cancer lesions from mouse models and patients demonstrates rare shared alterations between lesions. These findings suggest neoplastic bowel lesions developing in a background of inflammation experience lineage plasticity away from Wnt activation early during tumorigenesis and largely occur as genetically independent events.


Imaging Tumor-Infiltrating Lymphocytes in Brain Tumors with [64Cu]Cu-NOTA-anti-CD8 PET.

  • Veronica L Nagle‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2021‎

Glioblastoma (GBM) is the most common malignant brain tumor in adults. Various immunotherapeutic approaches to improve patient survival are being developed, but the molecular mechanisms of immunotherapy resistance are currently unknown. Here, we explored the ability of a humanized radiolabeled CD8-targeted minibody to noninvasively quantify tumor-infiltrating CD8-positive (CD8+) T cells using PET.


Noninvasive Imaging of CD4+ T Cells in Humanized Mice.

  • Veronica L Nagle‎ et al.
  • Molecular cancer therapeutics‎
  • 2022‎

Antibody-based PET (immunoPET) with radiotracers that recognize specific cells of the immune system provides an opportunity to monitor immune cell trafficking at the organismal scale. We previously reported the visualization of human CD8+ T cells, including CD8+ tumor-infiltrating lymphocytes (TIL), in mice using a humanized CD8-targeted minibody. Given the important role of CD4+ T cells in adaptive immune responses of health and disease including infections, tumors, and autoimmunity, we explored immunoPET using an anti-human-CD4 minibody. We assessed the ability of [64Cu]Cu-NOTA-IAB41 to bind to various CD4+ T-cell subsets in vitro. We also determined the effect of the CD4-targeted minibody on CD4+ T-cell abundance, proliferation, and activation state in vitro. We subsequently evaluated the ability of the radiotracer to visualize CD4+ T cells in T-cell rich organs and orthotopic brain tumors in vivo. For the latter, we injected the [64Cu]Cu-NOTA-IAB41 radiotracer into humanized mice that harbored intracranial patient-derived glioblastoma (GBM) xenografts and performed in vivo PET, ex vivo autoradiography, and anti-CD4 IHC on serial brain sections. [64Cu]Cu-NOTA-IAB41 specifically detects human CD4+ T cells without impacting their abundance, proliferation, and activation. In humanized mice, [64Cu]Cu-NOTA-IAB41 can visualize various peripheral tissues in addition to orthotopically implanted GBM tumors. [64Cu]Cu-NOTA-IAB41 is able to visualize human CD4+ T cells in humanized mice and can provide noninvasive quantification of CD4+ T-cell distribution on the organismal scale.


A reversible epigenetic memory of inflammatory injury controls lineage plasticity and tumor initiation in the mouse pancreas.

  • David J Falvo‎ et al.
  • Developmental cell‎
  • 2023‎

Inflammation is essential to the disruption of tissue homeostasis and can destabilize the identity of lineage-committed epithelial cells. Here, we employ lineage-traced mouse models, single-cell transcriptomic and chromatin analyses, and CUT&TAG to identify an epigenetic memory of inflammatory injury in the pancreatic acinar cell compartment. Despite resolution of pancreatitis, our data show that acinar cells fail to return to their molecular baseline, with retention of elevated chromatin accessibility and H3K4me1 at metaplasia genes, such that memory represents an incomplete cell fate decision. In vivo, we find this epigenetic memory controls lineage plasticity, with diminished metaplasia in response to a second insult but increased tumorigenesis with an oncogenic Kras mutation. The lowered threshold for oncogenic transformation, in turn, can be restored by blockade of MAPK signaling. Together, we define the chromatin dynamics, molecular encoding, and recall of a prolonged epigenetic memory of inflammatory injury that impacts future responses but remains reversible.


Dietary interventions to prevent high-fructose diet-associated worsening of colitis and colitis-associated tumorigenesis in mice.

  • Ryohei Nishiguchi‎ et al.
  • Carcinogenesis‎
  • 2021‎

Diet is believed to be an important factor in the pathogenesis of inflammatory bowel disease. High consumption of dietary fructose has been shown to exacerbate experimental colitis, an effect mediated through the gut microbiota. This study evaluated whether dietary alterations could attenuate the detrimental effects of a high-fructose diet (HFrD) in experimental colitis. First, we determined whether the procolitic effects of a HFrD could be reversed by switching mice from a HFrD to a control diet. This diet change completely prevented HFrD-induced worsening of acute colitis, in association with a rapid normalization of the microbiota. Second, we tested the effects of dietary fiber, which demonstrated that psyllium was the most effective type of fiber for protecting against HFrD-induced worsening of acute colitis, compared with pectin, inulin, or cellulose. In fact, supplemental psyllium nearly completely prevented the detrimental effects of the HFrD, an effect associated with a shift in the gut microbiota. We next determined whether the protective effects of these interventions could be extended to chronic colitis and colitis-associated tumorigenesis. Using the azoxymethane/dextran sodium sulfate model, we first demonstrated that HFrD feeding exacerbated chronic colitis and increased colitis-associated tumorigenesis. Using the same dietary changes tested in the acute colitis setting, we also showed that mice were protected from HFrD-mediated enhanced chronic colitis and tumorigenesis, upon either diet switching or psyllium supplementation. Taken together, these findings suggest that high consumption of fructose may enhance colon tumorigenesis associated with long-standing colitis, an effect that could be reduced by dietary alterations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: