Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Overlapping signatures of chronic pain in the DNA methylation landscape of prefrontal cortex and peripheral T cells.

  • Renaud Massart‎ et al.
  • Scientific reports‎
  • 2016‎

We tested the hypothesis that epigenetic mechanisms in the brain and the immune system are associated with chronic pain. Genome-wide DNA methylation assessed in 9 months post nerve-injury (SNI) and Sham rats, in the prefrontal cortex (PFC) as well as in T cells revealed a vast difference in the DNA methylation landscape in the brain between the groups and a remarkable overlap (72%) between differentially methylated probes in T cells and prefrontal cortex. DNA methylation states in the PFC showed robust correlation with pain score of animals in several genes involved in pain. Finally, only 11 differentially methylated probes in T cells were sufficient to distinguish SNI or Sham individual rats. This study supports the plausibility of DNA methylation involvement in chronic pain and demonstrates the potential feasibility of DNA methylation markers in T cells as noninvasive biomarkers of chronic pain susceptibility.


International Guidelines for the Treatment of Huntington's Disease.

  • Anne-Catherine Bachoud-Lévi‎ et al.
  • Frontiers in neurology‎
  • 2019‎

The European Huntington's Disease Network (EHDN) commissioned an international task force to provide global evidence-based recommendations for everyday clinical practice for treatment of Huntington's disease (HD). The objectives of such guidelines are to standardize pharmacological, surgical and non-pharmacological treatment regimen and improve care and quality of life of patients. A formalized consensus method, adapted from the French Health Authority recommendations was used. First, national committees (French and English Experts) reviewed all studies published between 1965 and 2015 included dealing with HD symptoms classified in motor, cognitive, psychiatric, and somatic categories. Quality grades were attributed to these studies based on levels of scientific evidence. Provisional recommendations were formulated based on the strength and the accumulation of scientific evidence available. When evidence was not available, recommendations were framed based on professional agreement. A European Steering committee supervised the writing of the final recommendations through a consensus process involving two rounds of online questionnaire completion with international multidisciplinary HD health professionals. Patients' associations were invited to review the guidelines including the HD symptoms. Two hundred and nineteen statements were retained in the final guidelines. We suggest to use this adapted method associating evidence base-medicine and expert consensus to other rare diseases.


Cognitive decline in Huntington's disease in the Digitalized Arithmetic Task (DAT).

  • Marine Lunven‎ et al.
  • PloS one‎
  • 2021‎

Efficient cognitive tasks sensitive to longitudinal deterioration in small cohorts of Huntington's disease (HD) patients are lacking in HD research. We thus developed and assessed the digitized arithmetic task (DAT), which combines inner language and executive functions in approximately 4 minutes.


DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: Project Ice Storm.

  • Lei Cao-Lei‎ et al.
  • PloS one‎
  • 2014‎

Prenatal maternal stress (PNMS) predicts a wide variety of behavioral and physical outcomes in the offspring. Although epigenetic processes may be responsible for PNMS effects, human research is hampered by the lack of experimental methods that parallel controlled animal studies. Disasters, however, provide natural experiments that can provide models of prenatal stress.


New-born females show higher stress- and genotype-independent methylation of SLC6A4 than males.

  • Helene Dukal‎ et al.
  • Borderline personality disorder and emotion dysregulation‎
  • 2015‎

Research has demonstrated an association between exposure to early life stress and an increased risk of psychiatric disorders in later life, in particular depression. However, the mechanism through which early life stress contributes to disease development remains unclear. Previous studies have reported an association between early life stress and altered methylation of the serotonin transporter gene (SLC6A4), a key candidate gene for several psychiatric disorders. These differences in methylation are influenced by sex and genetic variation in the SLC6A4-linked polymorphic region (5-HTTLPR). Furthermore, one study indicated that stress during pregnancy may induce methylation changes in SLC6A4 in the newborn. The present study is the first to investigate whether early life stress during pregnancy impacts on SLC6A4 methylation in newborns, taking into account the influence of genetic variation and sex.


Impact of traumatic brain injury on sleep structure, electrocorticographic activity and transcriptome in mice.

  • Meriem Sabir‎ et al.
  • Brain, behavior, and immunity‎
  • 2015‎

Traumatic brain injury (TBI), including mild TBI (mTBI), is importantly associated with vigilance and sleep complaints. Because sleep is required for learning, plasticity and recovery, we here evaluated the bidirectional relationship between mTBI and sleep with two specific objectives: (1) Test that mTBI rapidly impairs sleep-wake architecture and the dynamics of the electrophysiological marker of sleep homeostasis (i.e., non-rapid eye movement sleep delta (1-4Hz) activity); (2) evaluate the impact of sleep loss following mTBI on the expression of plasticity markers that have been linked to sleep homeostasis and on genome-wide gene expression. A closed-head injury model was used to perform a 48h electrocorticographic (ECoG) recording in mice submitted to mTBI or Sham surgery. mTBI was found to immediately decrease the capacity to sustain long bouts of wakefulness as well as the amplitude of the time course of ECoG delta activity during wakefulness. Significant changes in ECoG spectral activity during wakefulness, non-rapid eye movement and rapid eye movement sleep were observed mainly on the second recorded day. A second experiment was performed to measure gene expression in the cerebral cortex and hippocampus after a mTBI followed either by two consecutive days of 6h sleep deprivation (SD) or of undisturbed behavior (quantitative PCR and next-generation sequencing). mTBI modified the expression of genes involved in immunity, inflammation and glial function (e.g., chemokines, glial markers) and SD changed that of genes linked to circadian rhythms, synaptic activity/neuronal plasticity, neuroprotection and cell death and survival. SD appeared to affect gene expression in the cerebral cortex more importantly after mTBI than Sham surgery including that of the astrocytic marker Gfap, which was proposed as a marker of clinical outcome after TBI. Interestingly, SD impacted the hippocampal expression of the plasticity elements Arc and EfnA3 only after mTBI. Overall, our findings reveal alterations in spectral signature across all vigilance states in the first days after mTBI, and show that sleep loss post-mTBI reprograms the transcriptome in a brain area-specific manner and in a way that could be deleterious to brain recovery.


DNA methylation mediates the impact of exposure to prenatal maternal stress on BMI and central adiposity in children at age 13½ years: Project Ice Storm.

  • Lei Cao-Lei‎ et al.
  • Epigenetics‎
  • 2015‎

Prenatal maternal stress (PNMS) in animals and humans predicts obesity and metabolic dysfunction in the offspring. Epigenetic modification of gene function is considered one possible mechanism by which PNMS results in poor outcomes in offspring. Our goal was to determine the role of maternal objective exposure and subjective distress on child BMI and central adiposity at 13½ years of age, and to test the hypothesis that DNA methylation mediates the effect of PNMS on growth. Mothers were pregnant during the January 1998 Quebec ice storm. We assessed their objective exposure and subjective distress in June 1998. At age 13½ their children were weighed and measured (n = 66); a subsample provided blood samples for epigenetic studies (n = 31). Objective and subjective PNMS correlated with central adiposity (waist-to-height ratio); only objective PNMS predicted body mass index (BMI). Bootstrapping analyses showed that the methylation level of genes from established Type-1 and -2 diabetes mellitus pathways showed significant mediation of the effect of objective PNMS on both central adiposity and BMI. However, the negative mediating effects indicate that, although greater objective PNMS predicts greater BMI and adiposity, this effect is dampened by the effects of objective PNMS on DNA methylation, suggesting a protective role of the selected genes from Type-1 and -2 diabetes mellitus pathways. We provide data supporting that DNA methylation is a potential mechanism involved in the long-term adaptation and programming of the genome in response to early adverse environmental factors.


Developmental and adult expression patterns of the G-protein-coupled receptor GPR88 in the rat: Establishment of a dual nuclear-cytoplasmic localization.

  • Renaud Massart‎ et al.
  • The Journal of comparative neurology‎
  • 2016‎

GPR88 is a neuronal cerebral orphan G-protein-coupled receptor (GPCR) that has been linked to various psychiatric disorders. However, no extensive description of its localization has been provided so far. Here, we investigate the spatiotemporal expression of the GPR88 in prenatal and postnatal rat tissues by using in situ hybridization and immunohistochemistry. GPR88 protein was initially detected at embryonic day 16 (E16) in the striatal primordium. From E16-E20 to adulthood, the highest expression levels of both protein and mRNA were observed in striatum, olfactory tubercle, nucleus accumbens, amygdala, and neocortex, whereas in spinal cord, pons, and medulla GPR88 expression remains discrete. We observed an intracellular redistribution of GPR88 during cortical lamination. In the cortical plate of the developing cortex, GPR88 presents a classical GPCR plasma membrane/cytoplasmic localization that shifts, on the day of birth, to nuclei of neurons progressively settling in layers V to II. This intranuclear localization remains throughout adulthood and was also detected in monkey and human cortex as well as in the amygdala and hypothalamus of rats. Apart from the central nervous system, GPR88 was transiently expressed at high levels in peripheral tissues, including adrenal cortex (E16-E21) and cochlear ganglia (E19-P3), and also at moderate levels in retina (E18-E19) and spleen (E21-P7). The description of the GPR88 anatomical expression pattern may provide precious functional insights into this novel receptor. Furthermore, the GRP88 nuclear localization suggests nonclassical GPCR modes of action of the protein that could be relevant for cortical development and psychiatric disorders. J. Comp. Neurol. 524:2776-2802, 2016. © 2016 Wiley Periodicals, Inc.


Differential gene expression in mutant mice overexpressing or deficient in the serotonin transporter: a focus on urocortin 1.

  • Véronique Fabre‎ et al.
  • European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology‎
  • 2011‎

Transcriptome analyses were performed in the anterior raphe area of mutant mice deficient in the serotonin transporter (5-HTT KO) or overexpressing this protein (5-HTT TG), which exhibit opposite changes in anxiety-related behavior. Among genes with altered expression, the gene encoding the neuropeptide urocortin 1 was down-regulated in 5-HTT KO and up-regulated in 5-HTT TG mice. Expression of the gene encoding cocaine-and-amphetamine-related-peptide, which colocalizes with urocortin 1, was also increased in 5-HTT TG mutants. Real-time RT-PCR confirmed these data and immunoautoradiographic labeling showed that parallel changes in neuropeptide levels were confined to the non-preganglionic Edinger-Westphal nucleus. Thus, 5-HTT expression correlates with that of urocortin 1, suggesting that this peptide can be involved in the behavioral changes observed in 5-HTT mutant mice.


Epigenetic mechanisms underlie the crosstalk between growth factors and a steroid hormone.

  • Yehoshua Enuka‎ et al.
  • Nucleic acids research‎
  • 2017‎

Crosstalk between growth factors (GFs) and steroid hormones recurs in embryogenesis and is co-opted in pathology, but underlying mechanisms remain elusive. Our data from mammary cells imply that the crosstalk between the epidermal GF and glucocorticoids (GCs) involves transcription factors like p53 and NF-κB, along with reduced pausing and traveling of RNA polymerase II (RNAPII) at both promoters and bodies of GF-inducible genes. Essentially, GCs inhibit positive feedback loops activated by GFs and stimulate the reciprocal inhibitory loops. As expected, no alterations in DNA methylation accompany the transcriptional events instigated by either stimulus, but forced demethylation of regulatory regions broadened the repertoire of GF-inducible genes. We report that enhancers, like some promoters, are poised for activation by GFs and GCs. In addition, within the cooperative interface of the crosstalk, GFs enhance binding of the GC receptor to DNA and, in synergy with GCs, promote productive RNAPII elongation. Reciprocally, within the antagonistic interface GFs hyper-acetylate chromatin at unmethylated promoters and enhancers of genes involved in motility, but GCs hypoacetylate the corresponding regions. In conclusion, unmethylated genomic regions that encode feedback regulatory modules and differentially recruit RNAPII and acetylases/deacetylases underlie the crosstalk between GFs and a steroid hormone.


Fetal glucocorticoid receptor (Nr3c1) deficiency alters the landscape of DNA methylation of murine placenta in a sex-dependent manner and is associated to anxiety-like behavior in adulthood.

  • Michaela Schmidt‎ et al.
  • Translational psychiatry‎
  • 2019‎

Prenatal stress defines long-term phenotypes through epigenetic programming of the offspring. These effects are potentially mediated by glucocorticoid release and by sex. We hypothesized that the glucocorticoid receptor (Gr, Nr3c1) fashions the DNA methylation profile of offspring. Consistent with this hypothesis, fetal Nr3c1 heterozygosity leads to altered DNA methylation landscape in fetal placenta in a sex-specific manner. There was a significant overlap of differentially methylated genes in fetal placenta and adult frontal cortex in Nr3c1 heterozygotes. Phenotypically, Nr3c1 heterozygotes show significantly more anxiety-like behavior than wildtype. DNA methylation status of fetal placental tissue is significantly correlated with anxiety-like behavior of the same animals in adulthood. Thus, placental DNA methylation might predict behavioral phenotypes in adulthood. Our data supports the hypothesis that Nr3c1 influences DNA methylation at birth and that DNA methylation in placenta correlates with adult frontal cortex DNA methylation and anxiety-like phenotypes.


Objectively characterizing Huntington's disease using a novel upper limb dexterity test.

  • Samuel Woodgate‎ et al.
  • Journal of neurology‎
  • 2021‎

The Clinch Token Transfer Test (C3t) is a bi-manual coin transfer task that incorporates cognitive tasks to add complexity. This study explored the concurrent and convergent validity of the C3t as a simple, objective assessment of impairment that is reflective of disease severity in Huntington's, that is not reliant on clinical expertise for administration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: