Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Meta- and Orthogonal Integration of Influenza "OMICs" Data Defines a Role for UBR4 in Virus Budding.

  • Shashank Tripathi‎ et al.
  • Cell host & microbe‎
  • 2015‎

Several systems-level datasets designed to dissect host-pathogen interactions during influenza A infection have been reported. However, apparent discordance among these data has hampered their full utility toward advancing mechanistic and therapeutic knowledge. To collectively reconcile these datasets, we performed a meta-analysis of data from eight published RNAi screens and integrated these data with three protein interaction datasets, including one generated within the context of this study. Further integration of these data with global virus-host interaction analyses revealed a functionally validated biochemical landscape of the influenza-host interface, which can be queried through a simplified and customizable web portal (http://www.metascape.org/IAV). Follow-up studies revealed that the putative ubiquitin ligase UBR4 associates with the viral M2 protein and promotes apical transport of viral proteins. Taken together, the integrative analysis of influenza OMICs datasets illuminates a viral-host network of high-confidence human proteins that are essential for influenza A virus replication.


Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line.

  • Amit Kumar‎ et al.
  • Scientific reports‎
  • 2016‎

Akt signaling plays a central role in many biological processes, which are key players in human immunodeficiency virus 1 (HIV-1) pathogenesis. We found that Akt interacts with HIV-1 Nef protein. In primary T cells treated with exogenous Nef or acutely infected with Nef-expressing HIV-1 in vitro, Akt became phosphorylated on serine(473) and threonine(308). In vitro, Akt activation mediated by Nef in T-cells was blocked by HIV protease inhibitors (PI), but not by reverse transcriptase inhibitors (RTI). Ex vivo, we found that the Akt pathway is hyperactivated in peripheral blood lymphocytes (PBLs) from cART naïve HIV-1-infected patients. PBLs isolated from PI-treated patients, but not from RTI-treated patients, exhibited decreased Akt activation, T-cell proliferation and IL-2 production. We found that PI but not RTI can block HIV-1 reactivation in latently infected J-Lat lymphoid cells stimulated with various stimuli. Using luciferase measurement, we further confirmed that Nef-mediated reactivation of HIV-1 from latency in 1G5 cells was blocked by PI parallel to decreased Akt activation. Our results indicate that PI-mediated blockade of Akt activation could impact the HIV-1 reservoir and support the need to further assess the therapeutic use of HIV-1 PI in order to curtail latently infected cells in HIV-1-infected patients.


Positive regulation of TRAF6-dependent innate immune responses by protein phosphatase PP1-γ.

  • Amanda M Opaluch‎ et al.
  • PloS one‎
  • 2014‎

Innate immune sensors such as Toll-like receptors (TLRs) differentially utilize adaptor proteins and additional molecular mediators to ensure robust and precise immune responses to pathogen challenge. Through a gain-of-function genetic screen, we identified the gamma catalytic subunit of protein phosphatase 1 (PP1-γ) as a positive regulator of MyD88-dependent proinflammatory innate immune activation. PP1-γ physically interacts with the E3 ubiquitin ligase TRAF6, and enhances the activity of TRAF6 towards itself and substrates such as IKKγ, whereas enzymatically inactive PP1-γ represses these events. Importantly, these activities were found to be critical for cellular innate responses to pathogen challenge and microbial clearance in both mouse macrophages and human monocyte lines. These data indicate that PP1-γ phosphatase activity regulates overall TRAF6 E3 ubiquitin ligase function and promotes NF-κB-mediated innate signaling responses.


Systems-biology approaches to discover anti-viral effectors of the human innate immune response.

  • Carsten Münk‎ et al.
  • Viruses‎
  • 2011‎

Virus infections elicit an immediate innate response involving antiviral factors. The activities of some of these factors are, in turn, blocked by viral countermeasures. The ensuing battle between the host and the viruses is crucial for determining whether the virus establishes a foothold and/or induces adaptive immune responses. A comprehensive systems-level understanding of the repertoire of anti-viral effectors in the context of these immediate virus-host responses would provide significant advantages in devising novel strategies to interfere with the initial establishment of infections. Recent efforts to identify cellular factors in a comprehensive and unbiased manner, using genome-wide siRNA screens and other systems biology "omics" methodologies, have revealed several potential anti-viral effectors for viruses like Human immunodeficiency virus type 1 (HIV-1), Hepatitis C virus (HCV), West Nile virus (WNV), and influenza virus. This review describes the discovery of novel viral restriction factors and discusses how the integration of different methods in systems biology can be used to more comprehensively identify the intimate interactions of viruses and the cellular innate resistance.


HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2.

  • Karen E Ocwieja‎ et al.
  • PLoS pathogens‎
  • 2011‎

Genome-wide siRNA screens have identified host cell factors important for efficient HIV infection, among which are nuclear pore proteins such as RanBP2/Nup358 and the karyopherin Transportin-3/TNPO3. Analysis of the roles of these proteins in the HIV replication cycle suggested that correct trafficking through the pore may facilitate the subsequent integration step. Here we present data for coupling between these steps by demonstrating that depletion of Transportin-3 or RanBP2 altered the terminal step in early HIV replication, the selection of chromosomal sites for integration. We found that depletion of Transportin-3 and RanBP2 altered integration targeting for HIV. These knockdowns reduced HIV integration frequency in gene-dense regions and near gene-associated features, a pattern that differed from that reported for depletion of the HIV integrase binding cofactor Psip1/Ledgf/p75. MLV integration was not affected by the Transportin-3 knockdown. Using siRNA knockdowns and integration targeting analysis, we also implicated several additional nuclear proteins in proper target site selection. To map viral determinants of integration targeting, we analyzed a chimeric HIV derivative containing MLV gag, and found that the gag replacement phenocopied the Transportin-3 and RanBP2 knockdowns. Thus, our data support a model in which Gag-dependent engagement of the proper transport and nuclear pore machinery mediate trafficking of HIV complexes to sites of integration.


Human host factors required for influenza virus replication.

  • Renate König‎ et al.
  • Nature‎
  • 2010‎

Influenza A virus is an RNA virus that encodes up to 11 proteins and this small coding capacity demands that the virus use the host cellular machinery for many aspects of its life cycle. Knowledge of these host cell requirements not only informs us of the molecular pathways exploited by the virus but also provides further targets that could be pursued for antiviral drug development. Here we use an integrative systems approach, based on genome-wide RNA interference screening, to identify 295 cellular cofactors required for early-stage influenza virus replication. Within this group, those involved in kinase-regulated signalling, ubiquitination and phosphatase activity are the most highly enriched, and 181 factors assemble into a highly significant host-pathogen interaction network. Moreover, 219 of the 295 factors were confirmed to be required for efficient wild-type influenza virus growth, and further analysis of a subset of genes showed 23 factors necessary for viral entry, including members of the vacuolar ATPase (vATPase) and COPI-protein families, fibroblast growth factor receptor (FGFR) proteins, and glycogen synthase kinase 3 (GSK3)-beta. Furthermore, 10 proteins were confirmed to be involved in post-entry steps of influenza virus replication. These include nuclear import components, proteases, and the calcium/calmodulin-dependent protein kinase (CaM kinase) IIbeta (CAMK2B). Notably, growth of swine-origin H1N1 influenza virus is also dependent on the identified host factors, and we show that small molecule inhibitors of several factors, including vATPase and CAMK2B, antagonize influenza virus replication.


Induced pluripotent stem cell line (PEIi003-A) derived from an apparently healthy male individual.

  • Nina V Fuchs‎ et al.
  • Stem cell research‎
  • 2020‎

Induced pluripotent stem cells (iPSCs) are a useful tool to investigate pathomechanistic and cellular processes due to their differentiation potential into different somatic cell types in vitro. Here, we have generated iPSCs from an apparently healthy male individual using an integration-free reprogramming method. The resulting iPSCs are pluripotent and display a normal karyotype. Furthermore, we demonstrate that this iPSC line can be differentiated into all three germ layers.


Restrictive influence of SAMHD1 on Hepatitis B Virus life cycle.

  • Andreas F R Sommer‎ et al.
  • Scientific reports‎
  • 2016‎

Deoxynucleotide triphosphates (dNTPs) are essential for efficient hepatitis B virus (HBV) replication. Here, we investigated the influence of the restriction factor SAMHD1, a dNTP hydrolase (dNTPase) and RNase, on HBV replication. We demonstrated that silencing of SAMHD1 in hepatic cells increased HBV replication, while overexpression had the opposite effect. SAMHD1 significantly affected the levels of extracellular viral DNA as well as intracellular reverse transcription products, without affecting HBV RNAs or cccDNA. SAMHD1 mutations that interfere with the dNTPase activity (D137N) or in the catalytic center of the histidine-aspartate (HD) domain (D311A), and a phospho-mimetic mutation (T592E), abrogated the inhibitory activity. In contrast, a mutation diminishing the potential RNase but not dNTPase activity (Q548A) and a mutation disabling phosphorylation (T592A) did not affect antiviral activity. Moreover, HBV restriction by SAMHD1 was rescued by addition of deoxynucleosides. Although HBV infection did not directly affect protein level or phosphorylation of SAMHD1, the virus upregulated intracellular dATPs. Interestingly, SAMHD1 was dephosphorylated, thus in a potentially antiviral-active state, in primary human hepatocytes. Furthermore, SAMHD1 was upregulated by type I and II interferons in hepatic cells. These results suggest that SAMHD1 is a relevant restriction factor for HBV and restricts reverse transcription through its dNTPase activity.


SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection.

  • André Berger‎ et al.
  • PLoS pathogens‎
  • 2011‎

Myeloid blood cells are largely resistant to infection with human immunodeficiency virus type 1 (HIV-1). Recently, it was reported that Vpx from HIV-2/SIVsm facilitates infection of these cells by counteracting the host restriction factor SAMHD1. Here, we independently confirmed that Vpx interacts with SAMHD1 and targets it for ubiquitin-mediated degradation. We found that Vpx-mediated SAMHD1 degradation rendered primary monocytes highly susceptible to HIV-1 infection; Vpx with a T17A mutation, defective for SAMHD1 binding and degradation, did not show this activity. Several single nucleotide polymorphisms in the SAMHD1 gene have been associated with Aicardi-Goutières syndrome (AGS), a very rare and severe autoimmune disease. Primary peripheral blood mononuclear cells (PBMC) from AGS patients homozygous for a nonsense mutation in SAMHD1 (R164X) lacked endogenous SAMHD1 expression and support HIV-1 replication in the absence of exogenous activation. Our results indicate that within PBMC from AGS patients, CD14+ cells were the subpopulation susceptible to HIV-1 infection, whereas cells from healthy donors did not support infection. The monocytic lineage of the infected SAMHD1 -/- cells, in conjunction with mostly undetectable levels of cytokines, chemokines and type I interferon measured prior to infection, indicate that aberrant cellular activation is not the cause for the observed phenotype. Taken together, we propose that SAMHD1 protects primary CD14+ monocytes from HIV-1 infection confirming SAMHD1 as a potent lentiviral restriction factor.


Hepatitis B Virus DNA is a Substrate for the cGAS/STING Pathway but is not Sensed in Infected Hepatocytes.

  • Lise Lauterbach-Rivière‎ et al.
  • Viruses‎
  • 2020‎

Hepatitis B virus (HBV) chronic infection is a critical risk factor for hepatocellular carcinoma. The innate immune response to HBV infection is a matter of debate. In particular, viral escape mechanisms are poorly understood. Our study reveals that HBV RNAs are not immunostimulatory in immunocompetent myeloid cells. In contrast, HBV DNA from viral particles and DNA replication intermediates are immunostimulatory and sensed by cyclic GMP-AMP Synthase (cGAS) and Stimulator of Interferon Genes (STING). We show that primary human hepatocytes express DNA sensors to reduced levels compared to myeloid cells. Nevertheless, hepatocytes can respond to HBV relaxed-circular DNA (rcDNA), when transfected in sufficient amounts, but not to HBV infection. Finally, our data suggest that HBV infection does not actively inhibit the DNA-sensing pathway. In conclusion, in infected hepatocytes, HBV passively evades recognition by cellular sensors of nucleic acids by (i) producing non-immunostimulatory RNAs, (ii) avoiding sensing of its DNAs by cGAS/STING without active inhibition of the pathway.


Recognition of HIV-1 capsid by PQBP1 licenses an innate immune sensing of nascent HIV-1 DNA.

  • Sunnie M Yoh‎ et al.
  • Molecular cell‎
  • 2022‎

We have previously described polyglutamine-binding protein 1 (PQBP1) as an adapter required for the cyclic GMP-AMP synthase (cGAS)-mediated innate response to the human immunodeficiency virus 1 (HIV-1) and other lentiviruses. Cytoplasmic HIV-1 DNA is a transient and low-abundance pathogen-associated molecular pattern (PAMP), and the mechanism for its detection and verification is not fully understood. Here, we show a two-factor authentication strategy by the innate surveillance machinery to selectively respond to the low concentration of HIV-1 DNA, while distinguishing these species from extranuclear DNA molecules. We find that, upon HIV-1 infection, PQBP1 decorates the intact viral capsid, and this serves as a primary verification step for the viral nucleic acid cargo. As reverse transcription and capsid disassembly initiate, cGAS is recruited to the capsid in a PQBP1-dependent manner. This positions cGAS at the site of PAMP generation and sanctions its response to a low-abundance DNA PAMP.


Systems-based analysis of RIG-I-dependent signalling identifies KHSRP as an inhibitor of RIG-I receptor activation.

  • Stephen Soonthornvacharin‎ et al.
  • Nature microbiology‎
  • 2017‎

Retinoic acid-inducible gene I (RIG-I) receptor recognizes 5'-triphosphorylated RNA and triggers a signalling cascade that results in the induction of type-I interferon (IFN)-dependent responses. Its precise regulation represents a pivotal balance between antiviral defences and autoimmunity. To elucidate the cellular cofactors that regulate RIG-I signalling, we performed two global RNA interference analyses to identify both positive and negative regulatory nodes operating on the signalling pathway during virus infection. These factors were integrated with experimentally and computationally derived interactome data to build a RIG-I protein interaction network. Our analysis revealed diverse cellular processes, including the unfolded protein response, Wnt signalling and RNA metabolism, as critical cellular components governing innate responses to non-self RNA species. Importantly, we identified K-Homology Splicing Regulatory Protein (KHSRP) as a negative regulator of this pathway. We find that KHSRP associates with the regulatory domain of RIG-I to maintain the receptor in an inactive state and attenuate its sensing of viral RNA (vRNA). Consistent with increased RIG-I antiviral signalling in the absence of KHSRP, viral replication is reduced when KHSRP expression is knocked down both in vitro and in vivo. Taken together, these data indicate that KHSRP functions as a checkpoint regulator of the innate immune response to pathogen challenge.


Insights into Innate Sensing of Prototype Foamy Viruses in Myeloid Cells.

  • Maïwenn Bergez‎ et al.
  • Viruses‎
  • 2019‎

Foamy viruses (FVs) belong to the Spumaretrovirinae subfamily of retroviruses and are characterized by unique features in their replication strategy. This includes a reverse transcription (RTr) step of the packaged RNA genome late in replication, resulting in the release of particles with a fraction of them already containing an infectious viral DNA (vDNA) genome. Little is known about the immune responses against FVs in their hosts, which control infection and may be responsible for their apparent apathogenic nature. We studied the interaction of FVs with the innate immune system in myeloid cells, and characterized the viral pathogen-associated molecular patterns (PAMPs) and the cellular pattern recognition receptors and sensing pathways involved. Upon cytoplasmic access, full-length but not minimal vector genome containing FVs with active reverse transcriptase, induced an efficient innate immune response in various myeloid cells. It was dependent on cellular cGAS and STING and largely unaffected by RTr inhibition during viral entry. This suggests that RTr products, which are generated during FV morphogenesis in infected cells, and are therefore already present in FV particles taken up by immune cells, are the main PAMPs of FVs with full-length genomes sensed in a cGAS and STING-dependent manner by the innate immune system in host cells of the myeloid lineage.


Induced pluripotent stem cells (iPSCs) derived from a renpenning syndrome patient with c.459_462delAGAG mutation in PQBP1 (PEIi001-A).

  • Nina V Fuchs‎ et al.
  • Stem cell research‎
  • 2019‎

The Renpenning syndrome spectrum is a rare X-linked mental retardation syndrome characterized by intellectual disability, microcephaly, low stature, lean body and hypogonadism. Mutations in the polyglutamine tract binding protein 1 (PQBP1) locus are causative for disease. Here, we describe the generation of an iPSC line from a patient mutated in the polar amino acid-rich domain of PQBP1 resulting in a C-terminal truncated protein (c.459_462 delAGAG, type p.R153fs193X).


Cathelicidin Contributes to the Restriction of Leishmania in Human Host Macrophages.

  • Peter Crauwels‎ et al.
  • Frontiers in immunology‎
  • 2019‎

In cutaneous Leishmaniasis the parasitic control in human host macrophages is still poorly understood. We found an increased expression of the human cathelicidin CAMP in skin lesions of Ethiopian patients with cutaneous leishmaniasis. Vitamin D driven, Cathelicidin-type antimicrobial peptides (CAMP) play an important role in the elimination of invading microorganisms. Recombinant cathelicidin was able to induce cell-death characteristics in Leishmania in a dose dependent manner. Using human primary macrophages, we demonstrated pro-inflammatory macrophages (hMDM1) to express a higher level of human cathelicidin, both on gene and protein level, compared to anti-inflammatory macrophages (hMDM2). Activating the CAMP pathway using Vitamin D in hMDM1 resulted in a cathelicidin-mediated-Leishmania restriction. Finally, a reduction of cathelicidin in hMDM1, using a RNA interference (RNAi) approach, increased Leishmania parasite survival. In all, these data show the human cathelicidin to contribute to the innate immune response against Leishmaniasis in a human primary cell model.


Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression.

  • Júlia Canet-Pons‎ et al.
  • Neurobiology of disease‎
  • 2021‎

Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.


Gene editing of SAMHD1 in macrophage-like cells reveals complex relationships between SAMHD1 phospho-regulation, HIV-1 restriction, and cellular dNTP levels.

  • Moritz Schüssler‎ et al.
  • mBio‎
  • 2023‎

We introduce BLaER1 cells as an alternative myeloid cell model in combination with CRISPR/Cas9-mediated gene editing to study the influence of sterile α motif and HD domain-containing protein 1 (SAMHD1) T592 phosphorylation on anti-viral restriction and the control of cellular dNTP levels in an endogenous, physiologically relevant context. A proper understanding of the mechanism of the anti-viral function of SAMHD1 will provide attractive strategies aiming at selectively manipulating SAMHD1 without affecting other cellular functions. Even more, our toolkit may inspire further genetic analysis and investigation of restriction factors inhibiting retroviruses and their cellular function and regulation, leading to a deeper understanding of intrinsic anti-viral immunity.


High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus.

  • Vivian A Scheuplein‎ et al.
  • Journal of virology‎
  • 2015‎

The Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 as the causative agent of a severe respiratory disease with a fatality rate of approximately 30%. The high virulence and mortality rate prompted us to analyze aspects of MERS-CoV pathogenesis, especially its interaction with innate immune cells such as antigen-presenting cells (APCs). Particularly, we analyzed secretion of type I and type III interferons (IFNs) by APCs, i.e., B cells, macrophages, monocyte-derived/myeloid dendritic cells (MDDCs/mDCs), and by plasmacytoid dendritic cells (pDCs) of human and murine origin after inoculation with MERS-CoV. Production of large amounts of type I and III IFNs was induced exclusively in human pDCs, which were significantly higher than IFN induction by severe acute respiratory syndrome (SARS)-CoV. Of note, IFNs were secreted in the absence of productive replication. However, receptor binding, endosomal uptake, and probably signaling via Toll-like receptor 7 (TLR7) were critical for sensing of MERS-CoV by pDCs. Furthermore, active transcription of MERS-CoV N RNA and subsequent N protein expression were evident in infected pDCs, indicating abortive infection. Taken together, our results point toward dipeptidyl peptidase 4 (DPP4)-dependent endosomal uptake and subsequent infection of human pDCs by MERS-CoV. However, the replication cycle is stopped after early gene expression. In parallel, human pDCs are potent IFN-producing cells upon MERS-CoV infection. Knowledge of such IFN responses supports our understanding of MERS-CoV pathogenesis and is critical for the choice of treatment options.


Interferon but not MxB inhibits foamy retroviruses.

  • Ariane Bähr‎ et al.
  • Virology‎
  • 2016‎

Foamy viruses (FV) are retroviruses that are widely distributed in primate and non-primate animal species. We tested here FV with capsids of simian and non-simian origin for sensitivity to interferon-β (IFN-β). Our data show significant inhibition of FV by IFN-β early in infection of human HOS and THP-1 but not of HEK293T cells. The post-entry restriction of FV was not mediated by the interferon-induced MxB protein that was recently identified as a capsid-interacting restriction factor targeting Human immunodeficiency virus (HIV) before integration. Neither the ectopic expression of MxA or MxB in HEK293T cells nor the lack of MxB expression in CRISPR/CAS MxB THP-1 knockout cells impacted the infection of the tested FV. IFN-β treated THP-1 and THP-1 KO MxB cells showed the same extend of restriction to FV. Together, the data demonstrate that IFN-β inhibits FV early in infection and that MxB is not a restriction factor of FV.


A neutralization assay for chikungunya virus infections in a multiplex format.

  • Christopher Weber‎ et al.
  • Journal of virological methods‎
  • 2014‎

Chikungunya virus (CHIKV) is a mosquito-transmitted Alphavirus that causes chikungunya fever and has infected millions of people mainly in developing countries. The associated disease is characterized by rash, high fever and severe arthritis that can persist for years. Since the epidemic on La Réunion in 2006, CHIKV has adapted to Aedes albopictus, which also inhabits temperate regions of the eastern and western hemispheres, including Europe and the United States. A. albopictus might continue migrating north with continuing climate change and CHIKV would then no longer be confined to the developing nations. No treatment or licensed CHIKV vaccine exists. A CHIKV neutralization assay in a 384-well format by using CHIKV-pseudotyped lentiviral vectors was established. This assay system can be used for entry inhibitor screening under a reduced safety level (S2). Production of CHIKV-pseudotyped lentiviral vectors and the reaction volume are optimized. A dose dependent, specific neutralization of CHIKV-pseudotyped vectors with sera of CHIKV-infected individuals could be measured in a 384-well format. A safe and simple multiplex assay for the analysis of CHIKV neutralizing activities was developed and will be able to improve drug and vaccine development as well as it would improve the understanding of CHIKV epidemics regarding antibody responses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: