Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Human protein phosphatase PP6 regulatory subunits provide Sit4-dependent and rapamycin-sensitive sap function in Saccharomyces cerevisiae.

  • Helena Morales-Johansson‎ et al.
  • PloS one‎
  • 2009‎

In the budding yeast Saccharomyces cerevisiae the protein phosphatase Sit4 and four associated proteins (Sap4, Sap155, Sap185, and Sap190) mediate G(1) to S cell cycle progression and a number of signaling events controlled by the target of rapamycin TOR signaling cascade. Sit4 and the Sap proteins are ubiquitously conserved and their human orthologs, PP6 and three PP6R proteins, share significant sequence identity with their yeast counterparts. However, relatively little is known about the functions of the PP6 and PP6R proteins in mammalian cells. Here we demonstrate that the human PP6R proteins physically interact with Sit4 when expressed in yeast cells. Remarkably, expression of PP6R2 and PP6R3 but not expression of PP6R1 rescues the growth defect and rapamycin hypersensitivity of yeast cells lacking all four Saps, and these effects require Sit4. Moreover, PP6R2 and PP6R3 enhance cyclin G(1) gene expression and DNA synthesis, and partially abrogate the G(1) cell cycle delay and the budding defect of the yeast quadruple sap mutant strain. In contrast, the human PP6R proteins only modestly support nitrogen catabolite gene expression and are unable to restore normal levels of eIF2alpha phosphorylation in the quadruple sap mutant strain. These results illustrate that the human PP6-associated proteins are capable of providing distinct rapamycin-sensitive and Sit4-dependent Sap functions in the heterologous context of the yeast cell. We hypothesize that the human Saps may play analogous roles in mTORC1-PP6 signaling events in metazoans.


Immunonano-Lipocarrier-Mediated Liver Sinusoidal Endothelial Cell-Specific RUNX1 Inhibition Impedes Immune Cell Infiltration and Hepatic Inflammation in Murine Model of NASH.

  • Dinesh Mani Tripathi‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Runt-related transcription factor (RUNX1) regulates inflammation in non-alcoholic steatohepatitis (NASH).


A Novel Robust Method Mimicking Human Substratum To Dissect the Heterogeneity of Candida auris Biofilm Formation.

  • Biswambhar Biswas‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Candida auris is a pathogen of urgent threat level as marked by the CDC. The formation of biofilms is an essential property of this fungus to establish infection and escape drug treatment. However, our understanding of pathogenesis through biofilm is hampered by heterogeneity in C. auris biofilms observed in different studies. It is imperative to replicate in vivo conditions for studying C. auris biofilm formation in vitro. Different methods are standardized, but the surface used to form biofilms lacks consistency as well as the architecture of a typical biofilm. Here, we report an in vitro technique to grow C. auris biofilms on gelatin-coated coverslips. Interestingly, C. auris cells grown on gelatin-coated coverslips either on modified synthetic sweat media or RPMI 1640 resulted in similar multilayer biofilm formation with extracellular polymeric substances (EPS). This method is also consistent with the biofilm formation of other Candida species, such as Candida glabrata and Candida albicans. Biofilms of C. glabrata developed through this method show pseudohyphae and EPS. This method can be used to understand the molecular basis of biofilm formation, associated pathogenesis, and drug tolerance. The technique is cost-effective and would thus serve in rightful screening and repurposing drug libraries for designing new therapeutics against the less-studied high-alarm pathogen C. auris. IMPORTANCE Heterogeneity is seen when multidrug-resistant C. auris biofilm is cultured using different reported methods. Biofilm formed on the gelatin surface mimics the condition of a host environment that has multilayers and EPS. This method has feasibility for drug screening and analyzing biofilms through three-dimensional (3D) reconstruction. This in vitro biofilm formation technique is also exploited to study the formation of biofilm of other Candida species. The biofilms of C. glabrata and C. albicans can also be correctly mimicked using gelatin in the biofilm-forming environment. Thus, the novel in vitro method for biofilm formation reported here can be widely used to understand the mechanism of biofilm formation, related virulence properties, and drug tolerance of C. auris and other Candida species. This simple and low-cost technique is highly suitable for screening novel inhibitors and repurposed libraries and to design new therapeutics against Candida species.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: