Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 92 papers

Integrative analysis of the heat shock response in Aspergillus fumigatus.

  • Daniela Albrecht‎ et al.
  • BMC genomics‎
  • 2010‎

Aspergillus fumigatus is a thermotolerant human-pathogenic mold and the most common cause of invasive aspergillosis (IA) in immunocompromised patients. Its predominance is based on several factors most of which are still unknown. The thermotolerance of A. fumigatus is one of the traits which have been assigned to pathogenicity. It allows the fungus to grow at temperatures up to and above that of a fevered human host. To elucidate the mechanisms of heat resistance, we analyzed the change of the A. fumigatus proteome during a temperature shift from 30 degrees C to 48 degrees C by 2D-fluorescence difference gel electrophoresis (DIGE). To improve 2D gel image analysis results, protein spot quantitation was optimized by missing value imputation and normalization. Differentially regulated proteins were compared to previously published transcriptome data of A. fumigatus. The study was augmented by bioinformatical analysis of transcription factor binding sites (TFBSs) in the promoter region of genes whose corresponding proteins were differentially regulated upon heat shock.


Optimal regulatory strategies for metabolic pathways in Escherichia coli depending on protein costs.

  • Frank Wessely‎ et al.
  • Molecular systems biology‎
  • 2011‎

While previous studies have shed light on the link between the structure of metabolism and its transcriptional regulation, the extent to which transcriptional regulation controls metabolism has not yet been fully explored. In this work, we address this problem by integrating a large number of experimental data sets with a model of the metabolism of Escherichia coli. Using a combination of computational tools including the concept of elementary flux patterns, methods from network inference and dynamic optimization, we find that transcriptional regulation of pathways reflects the protein investment into these pathways. While pathways that are associated to a high protein cost are controlled by fine-tuned transcriptional programs, pathways that only require a small protein cost are transcriptionally controlled in a few key reactions. As a reason for the occurrence of these different regulatory strategies, we identify an evolutionary trade-off between the conflicting requirements to reduce protein investment and the requirement to be able to respond rapidly to changes in environmental conditions.


Computational prediction of molecular pathogen-host interactions based on dual transcriptome data.

  • Sylvie Schulze‎ et al.
  • Frontiers in microbiology‎
  • 2015‎

Inference of inter-species gene regulatory networks based on gene expression data is an important computational method to predict pathogen-host interactions (PHIs). Both the experimental setup and the nature of PHIs exhibit certain characteristics. First, besides an environmental change, the battle between pathogen and host leads to a constantly changing environment and thus complex gene expression patterns. Second, there might be a delay until one of the organisms reacts. Third, toward later time points only one organism may survive leading to missing gene expression data of the other organism. Here, we account for PHI characteristics by extending NetGenerator, a network inference tool that predicts gene regulatory networks from gene expression time series data. We tested multiple modeling scenarios regarding the stimuli functions of the interaction network based on a benchmark example. We show that modeling perturbation of a PHI network by multiple stimuli better represents the underlying biological phenomena. Furthermore, we utilized the benchmark example to test the influence of missing data points on the inference performance. Our results suggest that PHI network inference with missing data is possible, but we recommend to provide complete time series data. Finally, we extended the NetGenerator tool to incorporate gene- and time point specific variances, because complex PHIs may lead to high variance in expression data. Sample variances are directly considered in the objective function of NetGenerator and indirectly by testing the robustness of interactions based on variance dependent disturbance of gene expression values. We evaluated the method of variance incorporation on dual RNA sequencing (RNA-Seq) data of Mus musculus dendritic cells incubated with Candida albicans and proofed our method by predicting previously verified PHIs as robust interactions.


A review on computational systems biology of pathogen-host interactions.

  • Saliha Durmuş‎ et al.
  • Frontiers in microbiology‎
  • 2015‎

Pathogens manipulate the cellular mechanisms of host organisms via pathogen-host interactions (PHIs) in order to take advantage of the capabilities of host cells, leading to infections. The crucial role of these interspecies molecular interactions in initiating and sustaining infections necessitates a thorough understanding of the corresponding mechanisms. Unlike the traditional approach of considering the host or pathogen separately, a systems-level approach, considering the PHI system as a whole is indispensable to elucidate the mechanisms of infection. Following the technological advances in the post-genomic era, PHI data have been produced in large-scale within the last decade. Systems biology-based methods for the inference and analysis of PHI regulatory, metabolic, and protein-protein networks to shed light on infection mechanisms are gaining increasing demand thanks to the availability of omics data. The knowledge derived from the PHIs may largely contribute to the identification of new and more efficient therapeutics to prevent or cure infections. There are recent efforts for the detailed documentation of these experimentally verified PHI data through Web-based databases. Despite these advances in data archiving, there are still large amounts of PHI data in the biomedical literature yet to be discovered, and novel text mining methods are in development to unearth such hidden data. Here, we review a collection of recent studies on computational systems biology of PHIs with a special focus on the methods for the inference and analysis of PHI networks, covering also the Web-based databases and text-mining efforts to unravel the data hidden in the literature.


FungiFun2: a comprehensive online resource for systematic analysis of gene lists from fungal species.

  • Steffen Priebe‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2015‎

Systematically extracting biological meaning from omics data is a major challenge in systems biology. Enrichment analysis is often used to identify characteristic patterns in candidate lists. FungiFun is a user-friendly Web tool for functional enrichment analysis of fungal genes and proteins. The novel tool FungiFun2 uses a completely revised data management system and thus allows enrichment analysis for 298 currently available fungal strains published in standard databases. FungiFun2 offers a modern Web interface and creates interactive tables, charts and figures, which users can directly manipulate to their needs.


A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood.

  • Kerstin Hünniger‎ et al.
  • PLoS computational biology‎
  • 2014‎

Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost [Formula: see text] of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment-model-experiment cycles allowed quantitative analyses of the interplay between host and pathogen in a complex environment like human blood.


Candidalysin is a fungal peptide toxin critical for mucosal infection.

  • David L Moyes‎ et al.
  • Nature‎
  • 2016‎

Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name 'Candidalysin' for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.


Neuronal ROS signaling rather than AMPK/sirtuin-mediated energy sensing links dietary restriction to lifespan extension.

  • Sebastian Schmeisser‎ et al.
  • Molecular metabolism‎
  • 2013‎

Dietary restriction (DR) extends lifespan and promotes metabolic health in evolutionary distinct species. DR is widely believed to promote longevity by causing an energy deficit leading to increased mitochondrial respiration. We here show that inhibitors of mitochondrial complex I promote physical activity, stress resistance as well as lifespan of Caenorhabditis elegans despite normal food uptake, i.e. in the absence of DR. However, complex I inhibition does not further extend lifespan in dietarily restricted nematodes, indicating that impaired complex I activity mimics DR. Promotion of longevity due to complex I inhibition occurs independently of known energy sensors, including DAF-16/FoxO, as well as AAK-2/AMPK and SIR-2.1/sirtuins, or both. Consistent with the concept of mitohormesis, complex I inhibition transiently increases mitochondrial formation of reactive oxygen species (ROS) that activate PMK-1/p38 MAP kinase and SKN-1/NRF-2. Interference with this retrograde redox signal as well as ablation of two redox-sensitive neurons in the head of the worm similarly prevents extension of lifespan. These findings unexpectedly indicate that DR extends organismal lifespan through transient neuronal ROS signaling rather than sensing of energy depletion, providing unexpected pharmacological options to promote exercise capacity and healthspan despite unaltered eating habits.


Extension of life span by impaired glucose metabolism in Caenorhabditis elegans is accompanied by structural rearrangements of the transcriptomic network.

  • Steffen Priebe‎ et al.
  • PloS one‎
  • 2013‎

Glucose restriction mimicked by feeding the roundworm Caenorhabditis elegans with 2-deoxy-D-glucose (DOG) - a glucose molecule that lacks the ability to undergo glycolysis - has been found to increase the life span of the nematodes considerably. To facilitate understanding of the molecular mechanisms behind this life extension, we analyzed transcriptomes of DOG-treated and untreated roundworms obtained by RNA-seq at different ages. We found that, depending on age, DOG changes the magnitude of the expression values of about 2 to 24 percent of the genes significantly, although our results reveal that the gross changes introduced by DOG are small compared to the age-induced changes. We found that 27 genes are constantly either up- or down-regulated by DOG over the whole life span, among them several members of the cytochrome P450 family. The monotonic change with age of the temporal expression patterns of the genes was investigated, leading to the result that 21 genes reverse their monotonic behaviour under impaired glycolysis. Put simply, the DOG-treatment reduces the gross transcriptional activity but increases the interconnectedness of gene expression. However, a detailed analysis of network parameters discloses that the introduced changes differ remarkably between individual signalling pathways. We found a reorganization of the hubs of the mTOR pathway when standard diet is replaced by DOG feeding. By constructing correlation based difference networks, we identified those signalling pathways that are most vigorously changed by impaired glycolysis. Taken together, we have found a number of genes and pathways that are potentially involved in the DOG-driven extension of life span of C. elegans. Furthermore, our results demonstrate how the network structure of ageing-relevant signalling pathways is reorganised under impaired glycolysis.


Hormetic effect of rotenone in primary human fibroblasts.

  • Shiva Marthandan‎ et al.
  • Immunity & ageing : I & A‎
  • 2015‎

Rotenone inhibits the electron transfer from complex I to ubiquinone, in this way interfering with the electron transport chain in mitochondria. This chain of events induces increased levels of intracellular reactive oxygen species, which in turn can contribute to acceleration of telomere shortening and induction of DNA damage, ultimately resulting in aging. In this study, we investigated the effect of rotenone treatment in human fibroblast strains.


More than just a metabolic regulator--elucidation and validation of new targets of PdhR in Escherichia coli.

  • Anna-Katharina Göhler‎ et al.
  • BMC systems biology‎
  • 2011‎

The pyruvate dehydrogenase regulator protein (PdhR) of Escherichia coli acts as a transcriptional regulator in a pyruvate dependent manner to control central metabolic fluxes. However, the complete PdhR regulon has not yet been uncovered. To achieve an extended understanding of its gene regulatory network, we combined large-scale network inference and experimental verification of results obtained by a systems biology approach.


First Insights in NK-DC Cross-Talk and the Importance of Soluble Factors During Infection With Aspergillus fumigatus.

  • Esther Weiss‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2018‎

Invasive aspergillosis (IA) is an infectious disease caused by the fungal pathogen Aspergillus fumigatus that mainly affects immunocompromised hosts. To investigate immune cell cross-talk during infection with A. fumigatus, we co-cultured natural killer (NK) cells and dendritic cells (DC) after stimulation with whole fungal structures, components of the fungal cell wall, fungal lysate or ligands for distinct fungal receptors. Both cell types showed activation after stimulation with fungal components and were able to transfer activation signals to the counterpart not stimulated cell type. Interestingly, DCs recognized a broader spectrum of fungal components and thereby initiated NK cell activation when those did not recognize fungal structures. These experiments highlighted the supportive function of DCs in NK cell activation. Furthermore, we focused on soluble DC mediated NK cell activation and showed that DCs stimulated with the TLR2/Dectin-1 ligand zymosan could maximally stimulate the expression of CD69 on NK cells. Thus, we investigated the influence of both receptors for zymosan, Dectin-1 and TLR2, which are highly expressed on DCs but show only minimal expression on NK cells. Specific focus was laid on the question whether Dectin-1 or TLR2 signaling in DCs is important for the secretion of soluble factors leading to NK cell activation. Our results show that Dectin-1 and TLR2 are negligible for NK cell activation. We conclude that besides Dectin-1 and TLR2 other receptors on DCs are able to compensate for the missing signal.


Transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderly.

  • Peer Aramillo Irizar‎ et al.
  • Nature communications‎
  • 2018‎

Disease epidemiology during ageing shows a transition from cancer to degenerative chronic disorders as dominant contributors to mortality in the old. Nevertheless, it has remained unclear to what extent molecular signatures of ageing reflect this phenomenon. Here we report on the identification of a conserved transcriptomic signature of ageing based on gene expression data from four vertebrate species across four tissues. We find that ageing-associated transcriptomic changes follow trajectories similar to the transcriptional alterations observed in degenerative ageing diseases but are in opposite direction to the transcriptomic alterations observed in cancer. We confirm the existence of a similar antagonism on the genomic level, where a majority of shared risk alleles which increase the risk of cancer decrease the risk of chronic degenerative disorders and vice versa. These results reveal a fundamental trade-off between cancer and degenerative ageing diseases that sheds light on the pronounced shift in their epidemiology during ageing.


Predictive Virtual Infection Modeling of Fungal Immune Evasion in Human Whole Blood.

  • Maria T E Prauße‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Bloodstream infections by the human-pathogenic fungi Candida albicans and Candida glabrata increasingly occur in hospitalized patients and are associated with high mortality rates. The early immune response against these fungi in human blood comprises a concerted action of humoral and cellular components of the innate immune system. Upon entering the blood, the majority of fungal cells will be eliminated by innate immune cells, i.e., neutrophils and monocytes. However, recent studies identified a population of fungal cells that can evade the immune response and thereby may disseminate and cause organ dissemination, which is frequently observed during candidemia. In this study, we investigate the so far unresolved mechanism of fungal immune evasion in human whole blood by testing hypotheses with the help of mathematical modeling. We use a previously established state-based virtual infection model for whole-blood infection with C. albicans to quantify the immune response and identified the fungal immune-evasion mechanism. While this process was assumed to be spontaneous in the previous model, we now hypothesize that the immune-evasion process is mediated by host factors and incorporate such a mechanism in the model. In particular, we propose, based on previous studies that the fungal immune-evasion mechanism could possibly arise through modification of the fungal surface by as of yet unknown proteins that are assumed to be secreted by activated neutrophils. To validate or reject any of the immune-evasion mechanisms, we compared the simulation of both immune-evasion models for different infection scenarios, i.e., infection of whole blood with either C. albicans or C. glabrata under non-neutropenic and neutropenic conditions. We found that under non-neutropenic conditions, both immune-evasion models fit the experimental data from whole-blood infection with C. albicans and C. glabrata. However, differences between the immune-evasion models could be observed for the infection outcome under neutropenic conditions with respect to the distribution of fungal cells across the immune cells. Based on these predictions, we suggested specific experimental studies that might allow for the validation or rejection of the proposed immune-evasion mechanism.


Increased Expression of RUNX1 in Liver Correlates with NASH Activity Score in Patients with Non-Alcoholic Steatohepatitis (NASH).

  • Savneet Kaur‎ et al.
  • Cells‎
  • 2019‎

Given the important role of angiogenesis in liver pathology, the current study investigated the role of Runt-related transcription factor 1 (RUNX1), a regulator of developmental angiogenesis, in the pathogenesis of non-alcoholic steatohepatitis (NASH). Quantitative RT-PCRs and a transcription factor analysis of angiogenesis-associated differentially expressed genes in liver tissues of healthy controls, patients with steatosis and NASH, indicated a potential role of RUNX1 in NASH. The gene expression of RUNX1 was correlated with histopathological attributes of patients. The protein expression of RUNX1 in liver was studied by immunohistochemistry. To explore the underlying mechanisms, in vitro studies using RUNX1 siRNA and overexpression plasmids were performed in endothelial cells (ECs). RUNX1 expression was significantly correlated with inflammation, fibrosis and NASH activity score in NASH patients. Its expression was conspicuous in liver non-parenchymal cells. In vitro, factors from steatotic hepatocytes and/or VEGF or TGF- significantly induced the expression of RUNX1 in ECs. RUNX1 regulated the expression of angiogenic and adhesion molecules in ECs, including CCL2, PECAM1 and VCAM1, which was shown by silencing or over-expression of RUNX1. Furthermore, RUNX1 increased the angiogenic activity of ECs. This study reports that steatosis-induced RUNX1 augmented the expression of adhesion and angiogenic molecules and properties in ECs and may be involved in enhancing inflammation and disease severity in NASH.


Influencing factors of anti-SARS-CoV-2-spike-IgG antibody titers in healthcare workers: A cross-section study.

  • Julia Reusch‎ et al.
  • Journal of medical virology‎
  • 2023‎

Against the background of the current COVID-19 infection dynamics with its rapid spread of SARS-CoV-2 variants of concern (VOC), the immunity and the vaccine prevention of healthcare workers (HCWs) against SARS-CoV-2 continues to be of high importance. This observational cross-section study assesses factors influencing the level of anti-SARS-CoV-2-spike IgG after SARS-CoV-2 infection or vaccination. One thousand seven hundred and fifty HCWs were recruited meeting the following inclusion criteria: age ≥18 years, PCR-confirmed SARS-CoV-2 infection convalescence and/or at least one dose of COVID-19 vaccination. anti-SARS-CoV-2-spike IgG titers were determined by SERION ELISA agile SARS-CoV-2 IgG. Mean anti-SARS-CoV-2-spike IgG levels increased significantly by number of COVID-19 vaccinations (92.2 BAU/ml for single, 140.9 BAU/ml for twice and 1144.3 BAU/ml for threefold vaccination). Hybrid COVID-19 immunized respondents (after infection and vaccination) had significantly higher antibody titers compared with convalescent only HCWs. Anti-SARS-CoV-2-spike IgG titers declined significantly with time after the second vaccination. Smoking and high age were associated with lower titers. Both recovered and vaccinated HCWs presented a predominantly good humoral immune response. Smoking and higher age limited the humoral SARS-CoV-2 immunity, adding to the risk of severe infections within this already health impaired collective.


Genome-scale metabolic modeling of Aspergillus fumigatus strains reveals growth dependencies on the lung microbiome.

  • Mohammad H Mirhakkak‎ et al.
  • Nature communications‎
  • 2023‎

Aspergillus fumigatus, an opportunistic human pathogen, frequently infects the lungs of people with cystic fibrosis and is one of the most common causes of infectious-disease death in immunocompromised patients. Here, we construct 252 strain-specific, genome-scale metabolic models of this important fungal pathogen to study and better understand the metabolic component of its pathogenic versatility. The models show that 23.1% of A. fumigatus metabolic reactions are not conserved across strains and are mainly associated with amino acid, nucleotide, and nitrogen metabolism. Profiles of non-conserved reactions and growth-supporting reaction fluxes are sufficient to differentiate strains, for example by environmental or clinical origin. In addition, shotgun metagenomics analysis of sputum from 40 cystic fibrosis patients (15 females, 25 males) before and after diagnosis with an A. fumigatus colonization suggests that the fungus shapes the lung microbiome towards a more beneficial fungal growth environment associated with aromatic amino acid availability and the shikimate pathway. Our findings are starting points for the development of drugs or microbiome intervention strategies targeting fungal metabolic needs for survival and colonization in the non-native environment of the human lung.


Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells.

  • Jörg Linde‎ et al.
  • BMC systems biology‎
  • 2010‎

Reverse engineering of gene regulatory networks can be used to predict regulatory interactions of an organism faced with environmental changes, but can prove problematic, especially when focusing on complicated multi-factorial processes. Candida albicans is a major human fungal pathogen. During the infection process, this fungus is able to adapt to conditions of very low iron availability. Such adaptation is an important virulence attribute of virtually all pathogenic microbes. Understanding the regulation of iron acquisition genes will extend our knowledge of the complex regulatory changes during the infection process and might identify new potential drug targets. Thus, there is a need for efficient modelling approaches predicting key regulatory events of iron acquisition genes during the infection process.


Novel application of multi-stimuli network inference to synovial fibroblasts of rheumatoid arthritis patients.

  • Peter Kupfer‎ et al.
  • BMC medical genomics‎
  • 2014‎

Network inference of gene expression data is an important challenge in systems biology. Novel algorithms may provide more detailed gene regulatory networks (GRN) for complex, chronic inflammatory diseases such as rheumatoid arthritis (RA), in which activated synovial fibroblasts (SFBs) play a major role. Since the detailed mechanisms underlying this activation are still unclear, simultaneous investigation of multi-stimuli activation of SFBs offers the possibility to elucidate the regulatory effects of multiple mediators and to gain new insights into disease pathogenesis.


Dynamic modelling of microRNA regulation during mesenchymal stem cell differentiation.

  • Michael Weber‎ et al.
  • BMC systems biology‎
  • 2013‎

Network inference from gene expression data is a typical approach to reconstruct gene regulatory networks. During chondrogenic differentiation of human mesenchymal stem cells (hMSCs), a complex transcriptional network is active and regulates the temporal differentiation progress. As modulators of transcriptional regulation, microRNAs (miRNAs) play a critical role in stem cell differentiation. Integrated network inference aimes at determining interrelations between miRNAs and mRNAs on the basis of expression data as well as miRNA target predictions. We applied the NetGenerator tool in order to infer an integrated gene regulatory network.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: