2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 87 papers

Prevention of diet-induced hepatic steatosis and hepatic insulin resistance by second generation antisense oligonucleotides targeted to the longevity gene mIndy (Slc13a5).

  • Dominik H Pesta‎ et al.
  • Aging‎
  • 2015‎

Reducing the expression of the Indy (I'm Not Dead Yet) gene in lower organisms extends life span by mechanisms resembling caloric restriction. Similarly, deletion of the mammalian homolog, mIndy (Slc13a5), encoding for a plasma membrane tricarboxylate transporter, protects from aging- and diet-induced adiposity and insulin resistance in mice. The organ specific contribution to this phenotype is unknown. We examined the impact of selective inducible hepatic knockdown of mIndy on whole body lipid and glucose metabolism using 2'-O-methoxyethyl chimeric anti-sense oligonucleotides (ASOs) in high-fat fed rats. 4-week treatment with 2'-O-methoxyethyl chimeric ASO reduced mIndy mRNA expression by 91% (P=0.001) compared to control ASO. Besides similar body weights between both groups, mIndy-ASO treatment lead to a 74% reduction in fasting plasma insulin concentrations as well as a 35% reduction in plasma triglycerides. Moreover, hepatic triglyceride content was significantly reduced by the knockdown of mIndy, likely mediating a trend to decreased basal rates of endogenous glucose production as well as an increased suppression of hepatic glucose production by 25% during a hyperinsulinemic-euglycemic clamp. Together, these data suggest that inducible liver-selective reduction of mIndy in rats is able to ameliorate hepatic steatosis and insulin resistance, conditions occurring with high calorie diets and during aging.


3,5 Diiodo-L-Thyronine (T2) Does Not Prevent Hepatic Steatosis or Insulin Resistance in Fat-Fed Sprague Dawley Rats.

  • Daniel F Vatner‎ et al.
  • PloS one‎
  • 2015‎

Thyroid hormone mimetics are alluring potential therapies for diseases like dyslipidemia, nonalcoholic fatty liver disease (NAFLD), and insulin resistance. Though diiodothyronines are thought inactive, pharmacologic treatment with 3,5- Diiodo-L-Thyronine (T2) reportedly reduces hepatic lipid content and improves glucose tolerance in fat-fed male rats. To test this, male Sprague Dawley rats fed a safflower-oil based high-fat diet were treated with T2 (0.25 mg/kg-d) or vehicle. Neither 10 nor 30 days of T2 treatment had an effect on weight, adiposity, plasma fatty acids, or hepatic steatosis. Insulin action was quantified in vivo by a hyperinsulinemic-euglycemic clamp. T2 did not alter fasting plasma glucose or insulin concentration. Basal endogenous glucose production (EGP) rate was unchanged. During the clamp, there was no difference in insulin stimulated whole body glucose disposal. Insulin suppressed EGP by 60% ± 10 in T2-treated rats as compared with 47% ± 4 suppression in the vehicle group (p = 0.32). This was associated with an improvement in hepatic insulin signaling; insulin stimulated Akt phosphorylation was ~2.5 fold greater in the T2-treated group as compared with the vehicle-treated group (p = 0.003). There was no change in expression of genes thought to mediate the effect of T2 on hepatic metabolism, including genes that regulate hepatic lipid oxidation (ppara, carnitine palmitoyltransferase 1a), genes that regulate hepatic fatty acid synthesis (srebp1c, acetyl coa carboxylase, fatty acid synthase), and genes involved in glycolysis and gluconeogenesis (L-pyruvate kinase, glucose 6 phosphatase). Therefore, in contrast with previous reports, in Sprague Dawley rats fed an unsaturated fat diet, T2 administration failed to improve NAFLD or whole body insulin sensitivity. Though there was a modest improvement in hepatic insulin signaling, this was not associated with significant differences in hepatic insulin action. Further study will be necessary before diiodothyronines can be considered an effective treatment for NAFLD and dyslipidemia.


Complete Genome Sequencing of Lactobacillus plantarum ZLP001, a Potential Probiotic That Enhances Intestinal Epithelial Barrier Function and Defense Against Pathogens in Pigs.

  • Wei Zhang‎ et al.
  • Frontiers in physiology‎
  • 2018‎

No abstract available


Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo.

  • Anila K Madiraju‎ et al.
  • Nature medicine‎
  • 2018‎

Metformin, the universal first-line treatment for type 2 diabetes, exerts its therapeutic glucose-lowering effects by inhibiting hepatic gluconeogenesis. However, the primary molecular mechanism of this biguanide remains unclear, though it has been suggested to act, at least partially, by mitochondrial complex I inhibition. Here we show that clinically relevant concentrations of plasma metformin achieved by acute intravenous, acute intraportal or chronic oral administration in awake normal and diabetic rats inhibit gluconeogenesis from lactate and glycerol but not from pyruvate and alanine, implicating an increased cytosolic redox state in mediating metformin's antihyperglycemic effect. All of these effects occurred independently of complex I inhibition, evidenced by unaltered hepatic energy charge and citrate synthase flux. Normalizing the cytosolic redox state by infusion of methylene blue or substrates that contribute to gluconeogenesis independently of the cytosolic redox state abrogated metformin-mediated inhibition of gluconeogenesis in vivo. Additionally, in mice expressing constitutively active acetyl-CoA carboxylase, metformin acutely decreased hepatic glucose production and increased the hepatic cytosolic redox state without altering hepatic triglyceride content or gluconeogenic enzyme expression. These studies demonstrate that metformin, at clinically relevant plasma concentrations, inhibits hepatic gluconeogenesis in a redox-dependent manner independently of reductions in citrate synthase flux, hepatic nucleotide concentrations, acetyl-CoA carboxylase activity, or gluconeogenic enzyme protein expression.


Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms.

  • Giuseppe Ferrandino‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2017‎

Hypothyroidism, a metabolic disease characterized by low thyroid hormone (TH) and high thyroid-stimulating hormone (TSH) levels in the serum, is strongly associated with nonalcoholic fatty liver disease (NAFLD). Hypothyroidism-induced NAFLD has generally been attributed to reduced TH signaling in the liver with a consequent decrease in lipid utilization. Here, we found that mildly hypothyroid mice develop NAFLD without down-regulation of hepatic TH signaling or decreased hepatic lipid utilization. NAFLD was induced by impaired suppression of adipose tissue lipolysis due to decreased insulin secretion and to a reduced response of adipose tissue itself to insulin. This condition leads to increased shuttling of fatty acids (FAs) to the liver, where they are esterified and accumulated as triglycerides. Lipid accumulation in the liver induces hepatic insulin resistance, which leads to impaired suppression of endogenous glucose production after feeding. Hepatic insulin resistance, synergistically with lowered insulin secretion, increases serum glucose levels, which stimulates de novo lipogenesis (DNL) in the liver. Up-regulation of DNL also contributes to NAFLD. In contrast, severely hypothyroid mice show down-regulation of TH signaling in their livers and profound suppression of adipose tissue lipolysis, which decreases delivery of FAs to the liver. The resulting lack of substrates for triglyceride esterification protects severely hypothyroid mice against NAFLD. Our findings demonstrate that NAFLD occurs when TH levels are mildly reduced, but, paradoxically, not when they are severely reduced. Our results show that the pathogenesis of hypothyroidism-induced NAFLD is both intra- and extrahepatic; they also reveal key metabolic differences between mild and severe hypothyroidism.


Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice.

  • Abudukadier Abulizi‎ et al.
  • Journal of lipid research‎
  • 2020‎

Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp-/-) mice and age-weight matched wild-type control mice. Young (10-12-week-old) L-Mttp-/- mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp-/- mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp-/- mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp-/- mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp-/- mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp-/- mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp-/- mice.


Origin and Function of Stress-Induced IL-6 in Murine Models.

  • Hua Qing‎ et al.
  • Cell‎
  • 2020‎

Acute psychological stress has long been known to decrease host fitness to inflammation in a wide variety of diseases, but how this occurs is incompletely understood. Using mouse models, we show that interleukin-6 (IL-6) is the dominant cytokine inducible upon acute stress alone. Stress-inducible IL-6 is produced from brown adipocytes in a beta-3-adrenergic-receptor-dependent fashion. During stress, endocrine IL-6 is the required instructive signal for mediating hyperglycemia through hepatic gluconeogenesis, which is necessary for anticipating and fueling "fight or flight" responses. This adaptation comes at the cost of enhancing mortality to a subsequent inflammatory challenge. These findings provide a mechanistic understanding of the ontogeny and adaptive purpose of IL-6 as a bona fide stress hormone coordinating systemic immunometabolic reprogramming. This brain-brown fat-liver axis might provide new insights into brown adipose tissue as a stress-responsive endocrine organ and mechanistic insight into targeting this axis in the treatment of inflammatory and neuropsychiatric diseases.


Metabolic control analysis of hepatic glycogen synthesis in vivo.

  • Yuichi Nozaki‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Multiple insulin-regulated enzymes participate in hepatic glycogen synthesis, and the rate-controlling step responsible for insulin stimulation of glycogen synthesis is unknown. We demonstrate that glucokinase (GCK)-mediated glucose phosphorylation is the rate-controlling step in insulin-stimulated hepatic glycogen synthesis in vivo, by use of the somatostatin pancreatic clamp technique using [13C6]glucose with metabolic control analysis (MCA) in three rat models: 1) regular chow (RC)-fed male rats (control), 2) high fat diet (HFD)-fed rats, and 3) RC-fed rats with portal vein glucose delivery at a glucose infusion rate matched to the control. During hyperinsulinemia, hyperglycemia dose-dependently increased hepatic glycogen synthesis. At similar levels of hyperinsulinemia and hyperglycemia, HFD-fed rats exhibited a decrease and portal delivery rats exhibited an increase in hepatic glycogen synthesis via the direct pathway compared with controls. However, the strong correlation between liver glucose-6-phosphate concentration and net hepatic glycogen synthetic rate was nearly identical in these three groups, suggesting that the main difference between models is the activation of GCK. MCA yielded a high control coefficient for GCK in all three groups. We confirmed these findings in studies of hepatic GCK knockdown using an antisense oligonucleotide. Reduced liver glycogen synthesis in lipid-induced hepatic insulin resistance and increased glycogen synthesis during portal glucose infusion were explained by concordant changes in translocation of GCK. Taken together, these data indicate that the rate of insulin-stimulated hepatic glycogen synthesis is controlled chiefly through GCK translocation.


Circular RNA-ZNF609 regulates corneal neovascularization by acting as a sponge of miR-184.

  • Pengcheng Wu‎ et al.
  • Experimental eye research‎
  • 2020‎

Corneal neovascularization can cause abnormal blood vessels to grow in the normally transparent and translucent cornea leading to various sight-threatening eye diseases. microRNAs and circular RNAs are known to play essential roles in the regulation of numerous biological functions. It is urgently needed to understand the molecular mechanism of miRNAs and circular RNAs in the corneal neovascularization. We aimed to elucidate the role of a specific a circular RNA, cZNF609, in the corneal neovascularization. cZNF609 and miR-184 levels were determined by RT-qPCR. Luciferase reporter assay and RNA immunoprecipitation assay were conducted to verify the target of cZNF609. The biological function of cZNF609 and miR-184 were assessed via cell proliferation, migration, and tube formation assays in vitro as well as the corneal suture model in vivo. The up-regulation of cZNF609 and down-regulation of miR-184 were observed during corneal neovascularization. cZNF609 acted as a miR-184 sponge to block miR-184 activity. Overexpression of miR-184 suppressed HCEKs cell proliferation, migration in vitro, and angiogenesis in vivo. The miR-184-mediated inhibition effect can be rescued through the re-introduction of cZNF609. Mechanically, cZNF609/miR-184 interaction regulated the downstream Akt and VEGF signaling pathway. Intervention of cZNF609 and miR-184 may serve as a potential strategy for pathological corneal neovascularization treatment.


Isotope tracing reveals distinct substrate preference in murine melanoma subtypes with differing anti-tumor immunity.

  • Xinyi Zhang‎ et al.
  • Cancer & metabolism‎
  • 2022‎

Research about tumor "metabolic flexibility"-the ability of cells to toggle between preferred nutrients depending on the metabolic context-has largely focused on obesity-associated cancers. However, increasing evidence for a key role for nutrient competition in the tumor microenvironment, as well as for substrate regulation of immune function, suggests that substrate metabolism deserves reconsideration in immunogenic tumors that are not strongly associated with obesity.


Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis.

  • Rachel J Perry‎ et al.
  • Nature‎
  • 2020‎

Although it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes1-3, the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing the activity of hepatic adipose triglyceride lipase, intrahepatic lipolysis, hepatic acetyl-CoA content and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation-all of which are mediated by stimulation of the inositol triphosphate receptor 1 (INSP3R1). In rats and mice, chronic physiological increases in plasma glucagon concentrations increased mitochondrial oxidation of fat in the liver and reversed diet-induced hepatic steatosis and insulin resistance. However, these effects of chronic glucagon treatment-reversing hepatic steatosis and glucose intolerance-were abrogated in Insp3r1 (also known as Itpr1)-knockout mice. These results provide insights into glucagon biology and suggest that INSP3R1 may represent a target for therapies that aim to reverse nonalcoholic fatty liver disease and type-2 diabetes.


Complete Genome Sequencing and Comparative Genome Characterization of Lactobacillus johnsonii ZLJ010, a Potential Probiotic With Health-Promoting Properties.

  • Wei Zhang‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Lactobacillus johnsonii ZLJ010 is a probiotic strain isolated from the feces of a healthy sow and has putative health-promoting properties. To determine the molecular basis underlying the probiotic potential of ZLJ010 and the genes involved in the same, complete genome sequencing and comparative genome analysis with L. johnsonii ZLJ010 were performed. The ZLJ010 genome was found to contain a single circular chromosome of 1,999,879 bp with a guanine-cytosine (GC) content of 34.91% and encoded 18 ribosomal RNA (rRNA) genes and 77 transfer RNA (tRNA) genes. From among the 1,959 protein coding sequences (CDSs), genes known to confer probiotic properties were identified, including genes related to stress adaptation, biosynthesis, metabolism, transport of amino acid, secretion, and the defense machinery. ZLJ010 lacked complete or partial biosynthetic pathways for amino acids but was predicted to compensate for this with an enhanced transport system and some unique amino acid permeases and peptidases that allow it to acquire amino acids and other precursors exogenously. The comparative genomic analysis of L. johnsonii ZLP001 and seven other available L. johnsonii strains, including L. johnsonii NCC533, FI9785, DPC6026, N6.2, BS15, UMNLJ22, and PF01, revealed 2,732 pan-genome orthologous gene clusters and 1,324 core-genome orthologous gene clusters. Phylogenomic analysis based on 1,288 single copy genes showed that ZLJ010 had a closer relationship with the BS15 from yogurt and DPC6026 from the porcine intestinal tract but was located on a relatively standalone branch. The number of clusters of unique, strain-specific genes ranged from 42 to 185. A total of 219 unique genes present in the genome of L. johnsonii ZLJ010 primarily encoded proteins that are putatively involved in replication, recombination and repair, defense mechanisms, transcription, amino acid transport and metabolism, and carbohydrate transport and metabolism. Two unique prophages were predicted in the ZLJ010 genome. The present study helps us understand the ability of L. johnsonii ZLJ010 to better adapt to the gut environment and also its probiotic functionalities.


Hepatic insulin sensitivity is improved in high-fat diet-fed Park2 knockout mice in association with increased hepatic AMPK activation and reduced steatosis.

  • Lia R Edmunds‎ et al.
  • Physiological reports‎
  • 2019‎

Park2 is an E3 ubiquitin ligase known for its role in mitochondrial quality control via the mitophagy pathway. Park2 KO mice are protected from diet-induced obesity and hepatic insulin sensitivity is improved in high-fat diet (HFD)-fed Park2 KO mice even under body weight-matched conditions. In order to better understand the cellular mechanism by which Park2 KO mice are protected from diet-induced hepatic insulin resistance, we determined changes in multiple pathways commonly associated with the pathogenesis of insulin resistance, namely levels of bioactive lipid species, activation of the endoplasmic reticulum (ER) stress response and changes in cytokine levels and signaling. We report for the first time that whole-body insulin sensitivity is unchanged in regular chow (RC)-fed Park2 KO mice, and that liver diacylglycerol levels are reduced and very-long-chain ceramides are increased in Park2 KO mice fed HFD for 1 week. Hepatic transcriptional markers of the ER stress response were reduced and plasma tumor necrosis factor-α (TNFα), interleukin-6 and -10 (IL6, IL10) were significantly increased in HFD-fed Park2 KO mice; however, there were no detectable differences in hepatic inflammatory signaling pathways between groups. Interestingly, hepatic adenylate charge was reduced in HFD-fed Park2 KO liver and was associated increased activation of AMPK. These data suggest that negative energy balance that contributed to protection from obesity during chronic HFD manifested at the level of the hepatocyte during short-term HFD feeding and contributed to the improved hepatic insulin sensitivity.


Quantitative proteomic analysis of scleras in guinea pig exposed to wavelength defocus.

  • Yingying Wen‎ et al.
  • Journal of proteomics‎
  • 2021‎

Myopia is the most common optical disorder in the world, and wavelength defocus induced ametropia and myopia have attracted great attention. The objective was to identify and quantify scleral proteins involved in the response to the wavelength defocus. Guinea pigs were randomly divided into 3 groups that received different lighting conditions for 8 weeks: white light, short wavelength light, and long wavelength light. Refraction and axial length were measured, Hematoxylin-Eosin staining and transmission electron microscope were adopted to observe the scleral structure, and scleral proteome was also detected to analyze protein abundance by employing TMT labeling method. After light stimulation, the long- and short -wavelength light induced myopic and hyperopic effect on the guinea pig's eye and induced distinct protein signature, respectively. 186 dyregulated proteins between the short- and long-wavelength group were identified, which were mainly located in extracellular region and involved in metabolic process. We also found that 5 proteins in the guinea pigs scleras in response to wavelength defocus were also human myopic candidate targets, suggesting functional overlap between dyregulated proteins in scleral upon exposure to wavelength defocus and genes causing myopia in humans. SIGNIFICANCE: Wavelength defocus induces refractive errors and leads to myopia or hyperopia. However, sclera proteomics respond to wavelength defocus is lacking, which is crucial to understanding how wavelength defocus influences refractive development and induces myopia. In this proteome analysis, we identified unique protein signatures response to wavelength defocus in sclera of guinea pigs, identified potential mechanisms contributing to myopia formation, and found that several human myopia-related genes may involve in response to wavelength defocus. The results of this study provide a foundation to understand the mechanisms of myopia and wavelength defocus induced ametropia.


Gene and protein expression and metabolic flux analysis reveals metabolic scaling in liver ex vivo and in vivo.

  • Ngozi D Akingbesote‎ et al.
  • eLife‎
  • 2023‎

Metabolic scaling, the inverse correlation of metabolic rates to body mass, has been appreciated for more than 80 years. Studies of metabolic scaling have largely been restricted to mathematical modeling of caloric intake and oxygen consumption, and mostly rely on computational modeling. The possibility that other metabolic processes scale with body size has not been comprehensively studied. To address this gap in knowledge, we employed a systems approach including transcriptomics, proteomics, and measurement of in vitro and in vivo metabolic fluxes. Gene expression in livers of five species spanning a 30,000-fold range in mass revealed differential expression according to body mass of genes related to cytosolic and mitochondrial metabolic processes, and to detoxication of oxidative damage. To determine whether flux through key metabolic pathways is ordered inversely to body size, we applied stable isotope tracer methodology to study multiple cellular compartments, tissues, and species. Comparing C57BL/6 J mice with Sprague-Dawley rats, we demonstrate that while ordering of metabolic fluxes is not observed in in vitro cell-autonomous settings, it is present in liver slices and in vivo. Together, these data reveal that metabolic scaling extends beyond oxygen consumption to other aspects of metabolism, and is regulated at the level of gene and protein expression, enzyme activity, and substrate supply.


Tissue-specific reprogramming of glutamine metabolism maintains tolerance to sepsis.

  • Brooks P Leitner‎ et al.
  • PloS one‎
  • 2023‎

Reprogramming metabolism is of great therapeutic interest for reducing morbidity and mortality during sepsis-induced critical illness. Disappointing results from randomized controlled trials targeting glutamine and antioxidant metabolism in patients with sepsis have begged a deeper understanding of the tissue-specific metabolic response to sepsis. The current study sought to fill this gap. We analyzed skeletal muscle transcriptomics of critically ill patients, versus elective surgical controls, which revealed reduced expression of genes involved in mitochondrial metabolism and electron transport, with increases in glutathione cycling, glutamine, branched chain, and aromatic amino acid transport. We then performed untargeted metabolomics and 13C isotope tracing to analyze systemic and tissue specific metabolic phenotyping in a murine polymicrobial sepsis model. We found an increased number of correlations between the metabolomes of liver, kidney, and spleen, with loss of correlations between the heart and quadriceps and all other organs, pointing to a shared metabolic signature within vital abdominal organs, and unique metabolic signatures for muscles during sepsis. A lowered GSH:GSSG and elevated AMP:ATP ratio in the liver underlie the significant upregulation of isotopically labeled glutamine's contribution to TCA cycle anaplerosis and glutamine-derived glutathione biosynthesis; meanwhile, the skeletal muscle and spleen were the only organs where glutamine's contribution to the TCA cycle was significantly suppressed. These results highlight tissue-specific mitochondrial reprogramming to support liver energetic demands and antioxidant synthesis, rather than global mitochondrial dysfunction, as a metabolic consequence of sepsis.


Leptin's hunger-suppressing effects are mediated by the hypothalamic-pituitary-adrenocortical axis in rodents.

  • Rachel J Perry‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

Leptin informs the brain about sufficiency of fuel stores. When insufficient, leptin levels fall, triggering compensatory increases in appetite. Falling leptin is first sensed by hypothalamic neurons, which then initiate adaptive responses. With regard to hunger, it is thought that leptin-sensing neurons work entirely via circuits within the central nervous system (CNS). Very unexpectedly, however, we now show this is not the case. Instead, stimulation of hunger requires an intervening endocrine step, namely activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Increased corticosterone then activates AgRP neurons to fully increase hunger. Importantly, this is true for 2 forms of low leptin-induced hunger, fasting and poorly controlled type 1 diabetes. Hypoglycemia, which also stimulates hunger by activating CNS neurons, albeit independently of leptin, similarly recruits and requires this pathway by which HPA axis activity stimulates AgRP neurons. Thus, HPA axis regulation of AgRP neurons is a previously underappreciated step in homeostatic regulation of hunger.


Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler.

  • Rachel J Perry‎ et al.
  • Cell metabolism‎
  • 2013‎

Nonalcoholic fatty liver disease (NAFLD) affects one in three Americans and is a major predisposing condition for the metabolic syndrome and type 2 diabetes (T2D). We examined whether a functionally liver-targeted derivative of 2,4-dinitrophenol (DNP), DNP-methyl ether (DNPME), could safely decrease hypertriglyceridemia, NAFLD, and insulin resistance without systemic toxicities. Treatment with DNPME reversed hypertriglyceridemia, fatty liver, and whole-body insulin resistance in high-fat-fed rats and decreased hyperglycemia in a rat model of T2D with a wide therapeutic index. The reversal of liver and muscle insulin resistance was associated with reductions in tissue diacylglycerol content and reductions in protein kinase C epsilon (PKCε) and PKCθ activity in liver and muscle, respectively. These results demonstrate that the beneficial effects of DNP on hypertriglyceridemia, fatty liver, and insulin resistance can be dissociated from systemic toxicities and suggest the potential utility of liver-targeted mitochondrial uncoupling agents for the treatment of hypertriglyceridemia, NAFLD, metabolic syndrome, and T2D.


The mammalian INDY homolog is induced by CREB in a rat model of type 2 diabetes.

  • Frank Neuschäfer-Rube‎ et al.
  • Diabetes‎
  • 2014‎

Reduced expression of the INDY (I'm not dead yet) tricarboxylate carrier increased the life span in different species by mechanisms akin to caloric restriction. Mammalian INDY homolog (mIndy, SLC13A5) gene expression seems to be regulated by hormonal and/or nutritional factors. The underlying mechanisms are still unknown. The current study revealed that mIndy expression and [(14)C]-citrate uptake was induced by physiological concentrations of glucagon via a cAMP-dependent and cAMP-responsive element-binding protein (CREB)-dependent mechanism in primary rat hepatocytes. The promoter sequence of mIndy located upstream of the most frequent transcription start site was determined by 5'-rapid amplification of cDNA ends. In silico analysis identified a CREB-binding site within this promoter fragment of mIndy. Functional relevance for the CREB-binding site was demonstrated with reporter gene constructs that were induced by CREB activation when under the control of a fragment of a wild-type promoter, whereas promoter activity was lost after site-directed mutagenesis of the CREB-binding site. Moreover, CREB binding to this promoter element was confirmed by chromatin immunoprecipitation in rat liver. In vivo studies revealed that mIndy was induced in livers of fasted as well as in high-fat-diet-streptozotocin diabetic rats, in which CREB is constitutively activated. mIndy induction was completely prevented when CREB was depleted in these rats by antisense oligonucleotides. Together, these data suggest that mIndy is a CREB-dependent glucagon target gene that is induced in fasting and in type 2 diabetes. Increased mIndy expression might contribute to the metabolic consequences of diabetes in the liver.


Ectopic lipid deposition mediates insulin resistance in adipose specific 11β-hydroxysteroid dehydrogenase type 1 transgenic mice.

  • Abudukadier Abulizi‎ et al.
  • Metabolism: clinical and experimental‎
  • 2019‎

Excessive adipose glucocorticoid action is associated with insulin resistance, but the mechanisms linking adipose glucocorticoid action to insulin resistance are still debated. We hypothesized that insulin resistance from excess glucocorticoid action may be attributed in part to increased ectopic lipid deposition in liver.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: