Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

The Stability and Repeatability of Spontaneous Sympathetic Baroreflex Sensitivity in Healthy Young Individuals.

  • Sarah L Hissen‎ et al.
  • Frontiers in neuroscience‎
  • 2018‎

Spontaneous sympathetic baroreflex sensitivity (BRS) is a valuable tool for assessing how well the baroreflex buffers beat-to-beat changes in blood pressure. However, there has yet to be a study involving appropriate statistical tests to examine the stability of sympathetic BRS within an experimental session and the repeatability between separate sessions. The aim of this study was to use intra-class correlations, ordinary least products regression, and Bland-Altman analyses to examine the stability and repeatability of spontaneous sympathetic BRS assessment. In addition, the influence of recording duration on values of BRS was assessed. In eighty-four healthy young individuals (49 males, 35 females), continuous measurements of blood pressure, heart rate and muscle sympathetic nerve activity (MSNA) were recorded for 10 min. In a subgroup of 13 participants (11 male, 2 female) the measurements were repeated on a separate day. Sympathetic BRS was quantified using MSNA burst incidence (BRSinc) and total MSNA (BRStotal) for the first 5-min period, the second 5-min period, and a 2-min segment taken from the second 5-min period. Intra-class correlation coefficients indicated moderate stability in sympathetic BRSinc and BRStotal between the first and second 5-min periods in males (BRSincr = 0.63, BRStotalr = 0.78) and females (BRSincr = 0.61, BRStotalr = 0.47) with no proportional bias, but with fixed bias for BRSinc in females. When comparing the first 5-min with the 2-min period (n = 76), the intra-class correlation coefficient indicated poor to moderate repeatability in sympathetic BRSinc and BRStotal for males (BRSincr = -0.01, BRStotalr = 0.70) and females (BRSincr = 0.46, BRStotalr = 0.39). However, Bland-Altman analysis revealed a fixed bias for BRStotal in males and proportional bias for BRStotal in females, with lower BRS values for 5-min recordings. In the subgroup, intra-class correlations indicated moderate repeatability for measures of BRSinc (9 male, 2 female, r = 0.63) and BRStotal (6 male, 2 female, r = 0.68) assessed using 5-min periods recorded on separate days. However, Bland-Altman analysis indicated proportional bias for BRSinc and fixed bias for BRStotal. In conclusion, measures of spontaneous sympathetic BRS are moderately stable and repeatable within and between testing sessions in healthy young adults, provided that the same length of recording is used when making comparisons.


Intramuscular stimulation of tibialis anterior in human subjects: the effects of discharge variability on force production and fatigue.

  • Michael Leitch‎ et al.
  • Physiological reports‎
  • 2017‎

Continuous intramuscular stimulation of tibialis anterior (TA) was used to test the hypothesis that irregular trains of stimuli can increase force production and offset the magnitude of fatigue when compared with a continuous train of regular stimuli at an identical mean frequency (19 or 24 Hz). To achieve this, tungsten microelectrodes were inserted into the muscle belly into the motor point of the tibialis anterior muscle of able-bodied individuals (aged 19-50) and stimulated at current intensities ranging from 5 to 7 mA. The motor point was stimulated with a continuous train of regular stimulation at either 19 or 24 Hz (n = 11) or until the force declined below 25% of the peak force at the onset of stimulation. For the first seven subjects, no fatigue was exhibited, and thus, we simply compared the forces generated by the regular and irregular segments of the continuous train (120 sec for each segment). For four additional subjects, we delivered a higher frequency train (24 Hz) that elicited some fatigue. Once the force had declined below 25% of the initial peak force (which took between 140 and 210 sec), the continuous irregular train was integrated. Interestingly, for those subjects who exhibited muscular fatigue, force always began to rise again once the irregularity was incorporated into the continuous regular train of stimulation at the identical mean frequency (24 Hz). We conclude that incorporating irregularity into continuous trains of stimuli offers a significant advantage to the human neuromuscular system during both fatigued and nonfatigued states and could offer benefits to therapies such as functional electrical stimulation (FES).


Acute Exposure to Diesel Exhaust Increases Muscle Sympathetic Nerve Activity in Humans.

  • Gregory D Rankin‎ et al.
  • Journal of the American Heart Association‎
  • 2021‎

Background Diesel exhaust (DE) emissions are a major contributor to ambient air pollution and are strongly associated with cardiovascular morbidity and mortality. Exposure to traffic-related particulate matter is linked with acute adverse cardiovascular events; however, the mechanisms are not fully understood. We examined the role of the autonomic nervous system during exposure to DE that has previously only been indirectly investigated. Methods and Results Using microneurography, we measured muscle sympathetic nerve activity (MSNA) directly in the peroneal nerve of 16 healthy individuals. MSNA, heart rate, and respiration were recorded while subjects rested breathing filtered air, filtered air with an exposure mask, and standardized diluted DE (300 µg/m3) through the exposure mask. Heart rate variability was assessed from an ECG. DE inhalation rapidly causes an increase in number of MSNA bursts as well as the size of bursts within 10 minutes, peaking by 30 minutes (P<0.001), compared with baseline filtered air with an exposure mask. No significant changes occurred in heart rate variability indices during DE exposure; however, MSNA frequency correlated negatively with total power (r2=0.294, P=0.03) and low frequency (r2=0.258, P=0.045). Heart rate correlated positively with MSNA frequency (r2=0.268, P=0.04) and the change in percentage of larger bursts (burst amplitude, height >50% of the maximum burst) from filtered air with an exposure mask (r2=0.368, P=0.013). Conclusions Our study provides direct evidence for the rapid modulation of the autonomic nervous system after exposure to DE, with an increase in MSNA. The quick increase in sympathetic outflow may explain the strong epidemiological data associating traffic-related particulate matter to acute adverse cardiovascular events such as myocardial infarction. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02892279.


Muscle Sympathetic Nerve Activity Is Associated with Liver Insulin Sensitivity in Obese Non-Diabetic Men.

  • Daniel L T Chen‎ et al.
  • Frontiers in physiology‎
  • 2017‎

Introduction: Muscle sympathetic nerve activity (MSNA) may play a role in insulin resistance in obesity. However, the direction and nature of the relationship between MSNA and insulin resistance in obesity remain unclear. We hypothesized that resting MSNA would correlate inversely with both muscle and liver insulin sensitivity and that it would be higher in insulin-resistant vs. insulin-sensitive subjects. Materials and methods: Forty-five non-diabetic obese subjects were studied. As no significant relationships were found in women, the data presented in on 22 men aged 48 ± 12 years. Two-step (15 and 80 mU/m2/min) hyperinsulinaemic-euglycaemic clamps were performed using deuterated glucose to determine liver and muscle insulin sensitivity. Clinical and metabolic parameters were assessed. MSNA was measured via a microelectrode inserted percutaneously into the common peroneal nerve. Results: MSNA burst frequency correlated inversely with liver insulin sensitivity (r = -0.53, P = 0.02) and positively with the hepatokines C-reactive protein (CRP) and fibroblast growth factor (FGF)-19 (r = 0.57, P = 0.006, and r = -0.47, P = 0.03, respectively). MSNA burst frequency was lower in Liversen compared to Liverres (27 ± 5 vs. 38 ± 2 bursts per minute; P = 0.03). Muscle insulin sensitivity was unrelated to MSNA. Discussion: Sympathetic neural activation is related to liver insulin sensitivity and circulating hepatokines CRP and FGF-19 in non-diabetic obese men. These results suggest a potential hepato-endocrine-autonomic axis. Future studies are needed to clarify the influence of MSNA on liver insulin sensitivity in men.


Clonality of HTLV-2 in natural infection.

  • Anat Melamed‎ et al.
  • PLoS pathogens‎
  • 2014‎

Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) both cause lifelong persistent infections, but differ in their clinical outcomes. HTLV-1 infection causes a chronic or acute T-lymphocytic malignancy in up to 5% of infected individuals whereas HTLV-2 has not been unequivocally linked to a T-cell malignancy. Virus-driven clonal proliferation of infected cells both in vitro and in vivo has been demonstrated in HTLV-1 infection. However, T-cell clonality in HTLV-2 infection has not been rigorously characterized. In this study we used a high-throughput approach in conjunction with flow cytometric sorting to identify and quantify HTLV-2-infected T-cell clones in 28 individuals with natural infection. We show that while genome-wide integration site preferences in vivo were similar to those found in HTLV-1 infection, expansion of HTLV-2-infected clones did not demonstrate the same significant association with the genomic environment of the integrated provirus. The proviral load in HTLV-2 is almost confined to CD8+ T-cells and is composed of a small number of often highly expanded clones. The HTLV-2 load correlated significantly with the degree of dispersion of the clone frequency distribution, which was highly stable over ∼8 years. These results suggest that there are significant differences in the selection forces that control the clonal expansion of virus-infected cells in HTLV-1 and HTLV-2 infection. In addition, our data demonstrate that strong virus-driven proliferation per se does not predispose to malignant transformation in oncoretroviral infections.


Mal de Debarquement Syndrome: A Retrospective Online Questionnaire on the Influences of Gonadal Hormones in Relation to Onset and Symptom Fluctuation.

  • Viviana Mucci‎ et al.
  • Frontiers in neurology‎
  • 2018‎

Mal de Debarquement Syndrome (MdDS) is a condition characterized by a persistent perception of self-motion, in most cases triggered from exposure to passive motion (e.g., boat travel, a car ride, flights). Patients whose onset was triggered in this way are categorized as Motion-Triggered (MT) subtype or onset group. However, the same syndrome can occur spontaneously or after non-motion events, such as childbirth, high stress, surgery, etc. Patients who were triggered in this way are categorized as being of the Spontaneous/Other (SO) subtype or onset group. The underlying pathophysiology of MdDS is unknown and there has been some speculation that the two onset groups are separate entities. However, despite the differences in onset between the subtypes, symptoms are parallel and a significant female predominance has been shown. To date, the role of gonadal hormones in MdDS pathophysiology has not been investigated. This study aimed to evaluate the hormonal profile of MdDS patients, the presence of hormonal conditions, the influence of hormones on symptomatology and to assess possible hormonal differences between onset groups. In addition, the prevalence of migraine and motion sickness and their relation to MdDS were assessed.


Muscle sympathetic nerve activity-coupled changes in brain activity during sustained muscle pain.

  • Sophie Kobuch‎ et al.
  • Brain and behavior‎
  • 2018‎

Long-lasting experimental muscle pain elicits divergent muscle sympathetic responses, with some individuals exhibiting a persistent increase in muscle sympathetic nerve activity (MSNA), and others a decrease. These divergent responses are thought to result from sustained functional changes in specific brain regions that modulate the cardiovascular responses to pain.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: