Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Screening for novel LRRK2 inhibitors using a high-throughput TR-FRET cellular assay for LRRK2 Ser935 phosphorylation.

  • Spencer B Hermanson‎ et al.
  • PloS one‎
  • 2012‎

Mutations in the leucine-rich repeat kinase-2 (LRRK2) have been linked to Parkinson's disease. Recent studies show that inhibition of LRRK2 kinase activity decreased the level of phosphorylation at its own Ser910 and Ser935, indicating that these sites are prime targets for cellular readouts of LRRK2 inhibition.


Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization.

  • Nicolas Dzamko‎ et al.
  • The Biochemical journal‎
  • 2010‎

LRRK2 (leucine-rich repeat protein kinase 2) is mutated in a significant number of Parkinson's disease patients. Since a common mutation that replaces Gly2019 with a serine residue enhances kinase catalytic activity, small-molecule LRRK2 inhibitors might have utility in treating Parkinson's disease. However, the effectiveness of inhibitors is difficult to assess, as no physiological substrates or downstream effectors have been identified that could be exploited to develop a robust cell-based assay. We recently established that LRRK2 bound 14-3-3 protein isoforms via its phosphorylation of Ser910 and Ser935. In the present study we show that treatment of Swiss 3T3 cells or lymphoblastoid cells derived from control or a Parkinson's disease patient harbouring a homozygous LRRK2(G2019S) mutation with two structurally unrelated inhibitors of LRRK2 (H-1152 or sunitinib) induced dephosphorylation of endogenous LRRK2 at Ser910 and Ser935, thereby disrupting 14-3-3 interaction. Our results suggest that H-1152 and sunitinib induce dephosphorylation of Ser910 and Ser935 by inhibiting LRRK2 kinase activity, as these compounds failed to induce significant dephosphorylation of a drug-resistant LRRK2(A2016T) mutant. Moreover, consistent with the finding that non-14-3-3-binding mutants of LRRK2 accumulated within discrete cytoplasmic pools resembling inclusion bodies, we observed that H-1152 causes LRRK2 to accumulate within inclusion bodies. These findings indicate that dephosphorylation of Ser910/Ser935, disruption of 14-3-3 binding and/or monitoring LRRK2 cytoplasmic localization can be used as an assay to assess the relative activity of LRRK2 inhibitors in vivo. These results will aid the elaboration and evaluation of LRRK2 inhibitors. They will also stimulate further research to understand how phosphorylation of Ser910 and Ser935 is controlled by LRRK2, and establish any relationship to development of Parkinson's disease.


LRRK2 kinase activity and biology are not uniformly predicted by its autophosphorylation and cellular phosphorylation site status.

  • April Reynolds‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2014‎

Missense mutations in the Leucine-Rich Repeat protein Kinase 2 (LRRK2) gene are the most common genetic predisposition to develop Parkinson's disease (PD) (Farrer et al., 2005; Skipper et al., 2005; Di Fonzo et al., 2006; Healy et al., 2008; Paisan-Ruiz et al., 2008; Lesage et al., 2010). LRRK2 is a large multi-domain phosphoprotein with a GTPase domain and a serine/threonine protein kinase domain whose activity is implicated in neuronal toxicity; however the precise mechanism is unknown. LRRK2 autophosphorylates on several serine/threonine residues across the enzyme and is found constitutively phosphorylated on Ser910, Ser935, Ser955, and Ser973, which are proposed to be regulated by upstream kinases. Here we investigate the phosphoregulation at these sites by analyzing the effects of disease-associated mutations Arg1441Cys, Arg1441Gly, Ala1442Pro, Tyr1699Cys, Ile2012Thr, Gly2019Ser, and Ile2020Thr. We also studied alanine substitutions of phosphosite serines 910, 935, 955, and 973 and specific LRRK2 inhibition on autophosphorylation of LRRK2 Ser1292, Thr1491, Thr2483 and phosphorylation at the cellular sites. We found that mutants in the Roc-COR domains, including Arg1441Cys, Arg1441His, Ala1442Pro, and Tyr1699Cys, can positively enhance LRRK2 kinase activity, while concomitantly inducing the dephosphorylation of the cellular sites. Mutation of the cellular sites individually did not affect LRRK2 intrinsic kinase activity; however, Ser910/935/955/973Ala mutations trended toward increased kinase activity of LRRK2. Increased cAMP levels did not lead to increased LRRK2 cellular site phosphorylation, 14-3-3 binding or kinase activity. In cells, inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser1292 by Calyculin A and Okadaic acid sensitive phosphatases, while the cellular sites are dephosphorylated by Calyculin A sensitive phosphatases. These findings indicate that comparative analysis of both Ser1292 and Ser910/935/955/973 phosphorylation sites will provide important and distinct measures of LRRK2 kinase and biological activity in vitro and in vivo.


14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization.

  • R Jeremy Nichols‎ et al.
  • The Biochemical journal‎
  • 2010‎

LRRK2 (leucine-rich repeat protein kinase 2) is mutated in a significant number of Parkinson's disease patients, but still little is understood about how it is regulated or functions. In the present study we have demonstrated that 14-3-3 protein isoforms interact with LRRK2. Consistent with this, endogenous LRRK2 isolated from Swiss 3T3 cells or various mouse tissues is associated with endogenous 14-3-3 isoforms. We have established that 14-3-3 binding is mediated by phosphorylation of LRRK2 at two conserved residues (Ser910 and Ser935) located before the leucine-rich repeat domain. Our results suggests that mutation of Ser910 and/or Ser935 to disrupt 14-3-3 binding does not affect intrinsic protein kinase activity, but induces LRRK2 to accumulate within discrete cytoplasmic pools, perhaps resembling inclusion bodies. To investigate links between 14-3-3 binding and Parkinson's disease, we studied how 41 reported mutations of LRRK2 affected 14-3-3 binding and cellular localization. Strikingly, we found that five of the six most common pathogenic mutations (R1441C, R1441G, R1441H, Y1699C and I2020T) display markedly reduced phosphorylation of Ser910/Ser935 thereby disrupting interaction with 14-3-3. We have also demonstrated that Ser910/Ser935 phosphorylation and 14-3-3 binding to endogenous LRRK2 is significantly reduced in tissues of homozygous LRRK2(R1441C) knock-in mice. Consistent with 14-3-3 regulating localization, all of the common pathogenic mutations displaying reduced 14-3-3-binding accumulated within inclusion bodies. We also found that three of the 41 LRRK2 mutations analysed displayed elevated protein kinase activity (R1728H, ~2-fold; G2019S, ~3-fold; and T2031S, ~4-fold). These results provide the first evidence suggesting that 14-3-3 regulates LRRK2 and that disruption of the interaction of LRRK2 with 14-3-3 may be linked to Parkinson's disease.


A Phosphosite Mutant Approach on LRRK2 Links Phosphorylation and Dephosphorylation to Protective and Deleterious Markers, Respectively.

  • Antoine Marchand‎ et al.
  • Cells‎
  • 2022‎

The Leucine Rich Repeat Kinase 2 (LRRK2) gene is a major genetic determinant of Parkinson's disease (PD), encoding a homonymous multi-domain protein with two catalytic activities, GTPase and Kinase, involved in intracellular signaling and trafficking. LRRK2 is phosphorylated at multiple sites, including a cluster of autophosphorylation sites in the GTPase domain and a cluster of heterologous phosphorylation sites at residues 860 to 976. Phosphorylation at these latter sites is found to be modified in brains of PD patients, as well as for some disease mutant forms of LRRK2. The main aim of this study is to investigate the functional consequences of LRRK2 phosphorylation or dephosphorylation at LRRK2's heterologous phosphorylation sites. To this end, we generated LRRK2 phosphorylation site mutants and studied how these affected LRRK2 catalytic activity, neurite outgrowth and lysosomal physiology in cellular models. We show that phosphorylation of RAB8a and RAB10 substrates are reduced with phosphomimicking forms of LRRK2, while RAB29 induced activation of LRRK2 kinase activity is enhanced for phosphodead forms of LRRK2. Considering the hypothesis that PD pathology is associated to increased LRRK2 kinase activity, our results suggest that for its heterologous phosphorylation sites LRRK2 phosphorylation correlates to healthy phenotypes and LRRK2 dephosphorylation correlates to phenotypes associated to the PD pathological processes.


Protein phosphatase 2A holoenzymes regulate leucine-rich repeat kinase 2 phosphorylation and accumulation.

  • Matthieu Drouyer‎ et al.
  • Neurobiology of disease‎
  • 2021‎

LRRK2 is a highly phosphorylated multidomain protein and mutations in the gene encoding LRRK2 are a major genetic determinant of Parkinson's disease (PD). Dephosphorylation at LRRK2's S910/S935/S955/S973 phosphosite cluster is observed in several conditions including in sporadic PD brain, in several disease mutant forms of LRRK2 and after pharmacological LRRK2 kinase inhibition. However, the mechanism of LRRK2 dephosphorylation is poorly understood. We performed a phosphatome-wide reverse genetics screen to identify phosphatases involved in the dephosphorylation of the LRRK2 phosphosite S935. Candidate phosphatases selected from the primary screen were tested in mammalian cells, Xenopus oocytes and in vitro. Effects of PP2A on endogenous LRRK2 phosphorylation were examined via expression modulation with CRISPR/dCas9. Our screening revealed LRRK2 phosphorylation regulators linked to the PP1 and PP2A holoenzyme complexes as well as CDC25 phosphatases. We showed that dephosphorylation induced by different kinase inhibitor triggered relocalisation of phosphatases PP1 and PP2A in LRRK2 subcellular compartments in HEK-293 T cells. We also demonstrated that LRRK2 is an authentic substrate of PP2A both in vitro and in Xenopus oocytes. We singled out the PP2A holoenzyme PPP2CA:PPP2R2 as a powerful phosphoregulator of pS935-LRRK2. Furthermore, we demonstrated that this specific PP2A holoenzyme induces LRRK2 relocalization and triggers LRRK2 ubiquitination, suggesting its involvement in LRRK2 clearance. The identification of the PPP2CA:PPP2R2 complex regulating LRRK2 S910/S935/S955/S973 phosphorylation paves the way for studies refining PD therapeutic strategies that impact LRRK2 phosphorylation.


Discovery of G2019S-Selective Leucine Rich Repeat Protein Kinase 2 inhibitors with in vivo efficacy.

  • Robert K Leśniak‎ et al.
  • European journal of medicinal chemistry‎
  • 2022‎

Mutations in the Leucine Rich Repeat Protein Kinase 2 gene (LRRK2) are the most common genetic causes of Parkinson's Disease (PD). The G2019S mutation is the most common inherited LRRK2 mutation, occurs in the kinase domain, and results in increased kinase activity. We report the discovery and development of compound 38, an indazole-based, G2019S-selective (>2000-fold vs. WT) LRRK2 inhibitor capable of entering rodent brain (Kp = 0.5) and selectively inhibiting G2019S-LRRK2. The compounds disclosed herein present a starting point for further development of brain penetrant G2019S selective inhibitors that hopefully reduce lung phenotype side-effects and pave the way to providing a precision medicine for people with PD who carry the G2019S mutation.


Phosphorylation of LRRK2 serines 955 and 973 is disrupted by Parkinson's disease mutations and LRRK2 pharmacological inhibition.

  • Elizabeth A Doggett‎ et al.
  • Journal of neurochemistry‎
  • 2012‎

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease. An amino terminal cluster of constitutively phosphorylated residues, serines 860, 910, 935, 955, and 973, appears to be biologically relevant. Phosphorylation of serines 910 and 935 is regulated in response to LRRK2 kinase activity and is responsible for interaction with 14-3-3 and maintaining LRRK2 in a non-aggregated state. We examined the phosphorylation status of two other constitutive phosphorylation sites, serines 955 and 973. Treatment of LRRK2 expressing cells with the selective LRRK2 inhibitor LRRK2-IN1 revealed that, like Ser910/Ser935, phosphorylation of Ser955 and Ser973 is disrupted by acute inhibition of LRRK2 kinase activity. Additionally, phosphorylation of Ser955 and 973 is disrupted in the context of several Parkinson's disease associated mutations [R1441G/C, Y1699C, and I2020T]. We observed that modification of Ser973 is dependent on the modification of Ser910/Ser935. Ser955Ala and Ser973Ala mutations do not induce relocalization of LRRK2; however, all phosphomutants exhibited similar localization patterns when exposed to LRRK2-IN1. We conclude that the mechanisms of regulation of Ser910/935/955/973 phosphorylation are similar and physiologically relevant. These sites can be utilized as biomarkers for LRRK2 activity as well as starting points for the elucidation of upstream and downstream enzymes that regulate LRRK2.


Dissecting the effects of GTPase and kinase domain mutations on LRRK2 endosomal localization and activity.

  • Capria Rinaldi‎ et al.
  • Cell reports‎
  • 2023‎

Parkinson's disease-causing leucine-rich repeat kinase 2 (LRRK2) mutations lead to varying degrees of Rab GTPase hyperphosphorylation. Puzzlingly, LRRK2 GTPase-inactivating mutations-which do not affect intrinsic kinase activity-lead to higher levels of cellular Rab phosphorylation than kinase-activating mutations. Here, we investigate whether mutation-dependent differences in LRRK2 cellular localization could explain this discrepancy. We discover that blocking endosomal maturation leads to the rapid formation of mutant LRRK2+ endosomes on which LRRK2 phosphorylates substrate Rabs. LRRK2+ endosomes are maintained through positive feedback, which mutually reinforces membrane localization of LRRK2 and phosphorylated Rab substrates. Furthermore, across a panel of mutants, cells expressing GTPase-inactivating mutants form strikingly more LRRK2+ endosomes than cells expressing kinase-activating mutants, resulting in higher total cellular levels of phosphorylated Rabs. Our study suggests that the increased probability that LRRK2 GTPase-inactivating mutants are retained on intracellular membranes compared to kinase-activating mutants leads to higher substrate phosphorylation.


Evaluation of Current Methods to Detect Cellular Leucine-Rich Repeat Kinase 2 (LRRK2) Kinase Activity.

  • Belén Fernández‎ et al.
  • Journal of Parkinson's disease‎
  • 2022‎

Coding variation in the Leucine rich repeat kinase 2 gene linked to Parkinson's disease (PD) promotes enhanced activity of the encoded LRRK2 kinase, particularly with respect to autophosphorylation at S1292 and/or phosphorylation of the heterologous substrate RAB10.


Functional characterization of the vaccinia virus I5 protein.

  • Bethany Unger‎ et al.
  • Virology journal‎
  • 2008‎

The I5L gene is one of approximately 90 genes that are conserved throughout the chordopoxvirus family, and hence are presumed to play vital roles in the poxvirus life cycle. Previous work had indicated that the VP13 protein, a component of the virion membrane, was encoded by the I5L gene, but no additional studies had been reported. Using a recombinant virus that encodes an I5 protein fused to a V5 epitope tag at the endogenous locus (vI5V5), we show here that the I5 protein is expressed as a post-replicative gene and that the approximately 9 kDa protein does not appear to be phosphorylated in vivo. I5 does not appear to traffic to any cellular organelle, but ultrastructural and biochemical analyses indicate that I5 is associated with the membranous components of assembling and mature virions. Intact virions can be labeled with anti-V5 antibody as assessed by immunoelectron microscopy, indicating that the C' terminus of the protein is exposed on the virion surface. Using a recombinant virus which encodes only a TET-regulated copy of the I5V5 gene (vDeltaindI5V5), or one in which the I5 locus has been deleted (vDeltaI5), we also show that I5 is dispensable for replication in tissue culture. Neither plaque size nor the viral yield produced in BSC40 cells or primary human fibroblasts are affected by the absence of I5 expression.


The E3 ligase TRIM1 ubiquitinates LRRK2 and controls its localization, degradation, and toxicity.

  • Adrienne E D Stormo‎ et al.
  • The Journal of cell biology‎
  • 2022‎

Missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD); however, pathways regulating LRRK2 subcellular localization, function, and turnover are not fully defined. We performed quantitative mass spectrometry-based interactome studies to identify 48 novel LRRK2 interactors, including the microtubule-associated E3 ubiquitin ligase TRIM1 (tripartite motif family 1). TRIM1 recruits LRRK2 to the microtubule cytoskeleton for ubiquitination and proteasomal degradation by binding LRRK2911-919, a nine amino acid segment within a flexible interdomain region (LRRK2853-981), which we designate the "regulatory loop" (RL). Phosphorylation of LRRK2 Ser910/Ser935 within LRRK2 RL influences LRRK2's association with cytoplasmic 14-3-3 versus microtubule-bound TRIM1. Association with TRIM1 modulates LRRK2's interaction with Rab29 and prevents upregulation of LRRK2 kinase activity by Rab29 in an E3-ligase-dependent manner. Finally, TRIM1 rescues neurite outgrowth deficits caused by PD-driving mutant LRRK2 G2019S. Our data suggest that TRIM1 is a critical regulator of LRRK2, controlling its degradation, localization, binding partners, kinase activity, and cytotoxicity.


LRRK2 dephosphorylation increases its ubiquitination.

  • Jing Zhao‎ et al.
  • The Biochemical journal‎
  • 2015‎

Activating mutations in the leucine rich repeat protein kinase 2 (LRRK2) gene are the most common cause of inherited Parkinson's disease (PD). LRRK2 is phosphorylated on a cluster of phosphosites including Ser(910), Ser(935), Ser(955) and Ser(973), which are dephosphorylated in several PD-related LRRK2 mutants (N1437H, R1441C/G, Y1699C and I2020T) linking the regulation of these sites to PD. These serine residues are also dephosphorylated after kinase inhibition and lose 14-3-3 binding, which serves as a pharmacodynamic marker for inhibited LRRK2. Loss of 14-3-3 binding is well established, but the consequences of dephosphorylation are only now being uncovered. In the present study, we found that potent and selective inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(935) then ubiquitination and degradation of a significant fraction of LRRK2. GNE1023 treatment decreased the phosphorylation and stability of LRRK2 in expression systems and endogenous LRRK2 in A549 cells and in mouse dosing studies. We next established that LRRK2 is ubiquitinated through at least Lys(48) and Lys(63) ubiquitin linkages in response to inhibition. To investigate the link between dephosphorylation induced by inhibitor treatment and LRRK2 ubiquitination, we studied LRRK2 in conditions where it is dephosphorylated such as expression of PD mutants [R1441G, Y1699C and I2020T] or by blocking 14-3-3 binding to LRRK2 via difopein expression, and found LRRK2 is hyper-ubiquitinated. Calyculin A treatment prevents inhibitor and PD mutant induced dephosphorylation and reverts LRRK2 to a lesser ubiquitinated species, thus directly implicating phosphatase activity in LRRK2 ubiquitination. This dynamic dephosphorylation-ubiquitination cycle could explain detrimental loss-of-function phenotypes found in peripheral tissues of LRRK2 kinase inactive mutants, LRRK2 KO (knockout) animals and following LRRK2 inhibitor administration.


Reduced LRRK2 in association with retromer dysfunction in post-mortem brain tissue from LRRK2 mutation carriers.

  • Ye Zhao‎ et al.
  • Brain : a journal of neurology‎
  • 2018‎

Missense mutations in leucine-rich repeat kinase 2 (LRRK2) are pathogenic for familial Parkinson's disease. However, it is unknown whether levels of LRRK2 protein in the brain are altered in patients with LRRK2-associated Parkinson's disease. Because LRRK2 mutations are relatively rare, accounting for approximately 1% of all Parkinson's disease, we accessioned cases from five international brain banks to investigate levels of the LRRK2 protein, and other genetically associated Parkinson's disease proteins. Brain tissue was obtained from 17 LRRK2 mutation carriers (12 with the G2019S mutation and five with the I2020T mutation) and assayed by immunoblot. Compared to matched controls and idiopathic Parkinson's disease cases, we found levels of LRRK2 protein were reduced in the LRRK2 mutation cases. We also measured a decrease in two other proteins genetically implicated in Parkinson's disease, the core retromer component, vacuolar protein sorting associated protein 35 (VPS35), and the lysosomal hydrolase, glucocerebrosidase (GBA). Moreover, the classical retromer cargo protein, cation-independent mannose-6-phosphate receptor (MPR300, encoded by IGF2R), was also reduced in the LRRK2 mutation cohort and protein levels of the receptor were correlated to levels of LRRK2. These results provide new data on LRRK2 protein expression in brain tissue from LRRK2 mutation carriers and support a relationship between LRRK2 and retromer dysfunction in LRRK2-associated Parkinson's disease brain.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: