Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Integrating EMR-linked and in vivo functional genetic data to identify new genotype-phenotype associations.

  • Jonathan D Mosley‎ et al.
  • PloS one‎
  • 2014‎

The coupling of electronic medical records (EMR) with genetic data has created the potential for implementing reverse genetic approaches in humans, whereby the function of a gene is inferred from the shared pattern of morbidity among homozygotes of a genetic variant. We explored the feasibility of this approach to identify phenotypes associated with low frequency variants using Vanderbilt's EMR-based BioVU resource. We analyzed 1,658 low frequency non-synonymous SNPs (nsSNPs) with a minor allele frequency (MAF)<10% collected on 8,546 subjects. For each nsSNP, we identified diagnoses shared by at least 2 minor allele homozygotes and with an association p<0.05. The diagnoses were reviewed by a clinician to ascertain whether they may share a common mechanistic basis. While a number of biologically compelling clinical patterns of association were observed, the frequency of these associations was identical to that observed using genotype-permuted data sets, indicating that the associations were likely due to chance. To refine our analysis associations, we then restricted the analysis to 711 nsSNPs in genes with phenotypes in the On-line Mendelian Inheritance in Man (OMIM) or knock-out mouse phenotype databases. An initial comparison of the EMR diagnoses to the known in vivo functions of the gene identified 25 candidate nsSNPs, 19 of which had significant genotype-phenotype associations when tested using matched controls. Twleve of the 19 nsSNPs associations were confirmed by a detailed record review. Four of 12 nsSNP-phenotype associations were successfully replicated in an independent data set: thrombosis (F5,rs6031), seizures/convulsions (GPR98,rs13157270), macular degeneration (CNGB3,rs3735972), and GI bleeding (HGFAC,rs16844401). These analyses demonstrate the feasibility and challenges of using reverse genetics approaches to identify novel gene-phenotype associations in human subjects using low frequency variants. As increasing amounts of rare variant data are generated from modern genotyping and sequence platforms, model organism data may be an important tool to enable discovery.


Expression of CD70 Modulates Nitric Oxide and Redox Status in Endothelial Cells.

  • Arvind K Pandey‎ et al.
  • Arteriosclerosis, thrombosis, and vascular biology‎
  • 2022‎

Endothelial dysfunction is a critical component in the pathogenesis of cardiovascular diseases and is closely associated with nitric oxide (NO) levels and oxidative stress. Here, we report on novel findings linking endothelial expression of CD70 (also known as CD27 ligand) with alterations in NO and reactive oxygen species.


Development and implementation of an integrated preclinical atherosclerosis database.

  • Rachel Xiang‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Basic scientists have used preclinical animal models to explore mechanisms driving human diseases for decades, resulting in thousands of publications, each supporting causative inferences. Despite substantial advances in the mechanistic construct of disease, there has been limited translation from individual studies to advances in clinical care. An integrated approach to these individual studies has the potential to improve translational success.


Frequency and phenotype consequence of APOC3 rare variants in patients with very low triglyceride levels.

  • Dana C Crawford‎ et al.
  • BMC medical genomics‎
  • 2018‎

High levels of triglycerides (TG ≥200 mg/dL) are an emerging risk factor for cardiovascular disease. Conversely, very low levels of TG are associated with decreased risk for cardiovascular disease. Precision medicine aims to capitalize on recent findings that rare variants such as APOC3 R19X (rs76353203) are associated with risk of disease, but it is unclear how population-based associations can be best translated in clinical settings at the individual-patient level.


The polygenic architecture of left ventricular mass mirrors the clinical epidemiology.

  • Jonathan D Mosley‎ et al.
  • Scientific reports‎
  • 2020‎

Left ventricular (LV) mass is a prognostic biomarker for incident heart disease and all-cause mortality. Large-scale genome-wide association studies have identified few SNPs associated with LV mass. We hypothesized that a polygenic discovery approach using LV mass measurements made in a clinical population would identify risk factors and diseases associated with adverse LV remodeling. We developed a polygenic single nucleotide polymorphism-based predictor of LV mass in 7,601 individuals with LV mass measurements made during routine clinical care. We tested for associations between this predictor and 894 clinical diagnoses measured in 58,838 unrelated genotyped individuals. There were 29 clinical phenotypes associated with the LV mass genetic predictor at FDR q < 0.05. Genetically predicted higher LV mass was associated with modifiable cardiac risk factors, diagnoses related to organ dysfunction and conditions associated with abnormal cardiac structure including heart failure and atrial fibrillation. Secondary analyses using polygenic predictors confirmed a significant association between higher LV mass and body mass index and, in men, associations with coronary atherosclerosis and systolic blood pressure. In summary, these analyses show that LV mass-associated genetic variability associates with diagnoses of cardiac diseases and with modifiable risk factors which contribute to these diseases.


The Role of Bone Morphogenetic Protein Signaling in Non-Alcoholic Fatty Liver Disease.

  • Timothy E Thayer‎ et al.
  • Scientific reports‎
  • 2020‎

Non-alcoholic fatty liver disease (NAFLD) affects over 30% of adults in the United States. Bone morphogenetic protein (BMP) signaling is known to contribute to hepatic fibrosis, but the role of BMP signaling in the development of NAFLD is unclear. In this study, treatment with either of two BMP inhibitors reduced hepatic triglyceride content in diabetic (db/db) mice. BMP inhibitor-induced decrease in hepatic triglyceride levels was associated with decreased mRNA encoding Dgat2, an enzyme integral to triglyceride synthesis. Treatment of hepatoma cells with BMP2 induced DGAT2 expression and activity via intracellular SMAD signaling. In humans we identified a rare missense single nucleotide polymorphism in the BMP type 1 receptor ALK6 (rs34970181;R371Q) associated with a 2.1-fold increase in the prevalence of NAFLD. In vitro analyses revealed R371Q:ALK6 is a previously unknown constitutively active receptor. These data show that BMP signaling is an important determinant of NAFLD in a murine model and is associated with NAFLD in humans.


Precision nicotine metabolism-informed care for smoking cessation in Crohn's disease: A pilot study.

  • Elizabeth A Scoville‎ et al.
  • PloS one‎
  • 2020‎

Smoking is a strong risk factor for disease severity in Crohn's disease (CD) and cessation improves outcomes. The nicotine metabolite ratio (NMR) predicts cessation success with pharmacotherapy: varenicline doubles cessation over nicotine replacement therapy (NRT) for "normal", but not "slow" metabolizers. Varenicline side effects are heightened in slow metabolizers. Methods using NMR to optimize cessation pharmacotherapy have not been evaluated in CD.


Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction.

  • Juan Zhao‎ et al.
  • Scientific reports‎
  • 2019‎

Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data. Our study cohort included 109, 490 individuals. In the first experiment, we extracted aggregated and longitudinal features from EHR. We applied logistic regression, random forests, gradient boosting trees, convolutional neural networks (CNN) and recurrent neural networks with long short-term memory (LSTM) units. In the second experiment, we applied a late-fusion approach to incorporate genetic features. We compared the performance with approaches currently utilized in routine clinical practice - American College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk Equation. Our results indicated that incorporating longitudinal feature lead to better event prediction. Combining genetic features through a late-fusion approach can further improve CVD prediction, underscoring the importance of integrating relevant genetic data whenever available.


A study paradigm integrating prospective epidemiologic cohorts and electronic health records to identify disease biomarkers.

  • Jonathan D Mosley‎ et al.
  • Nature communications‎
  • 2018‎

Defining the full spectrum of human disease associated with a biomarker is necessary to advance the biomarker into clinical practice. We hypothesize that associating biomarker measurements with electronic health record (EHR) populations based on shared genetic architectures would establish the clinical epidemiology of the biomarker. We use Bayesian sparse linear mixed modeling to calculate SNP weightings for 53 biomarkers from the Atherosclerosis Risk in Communities study. We use the SNP weightings to computed predicted biomarker values in an EHR population and test associations with 1139 diagnoses. Here we report 116 associations meeting a Bonferroni level of significance. A false discovery rate (FDR)-based significance threshold reveals more known and undescribed associations across a broad range of biomarkers, including biometric measures, plasma proteins and metabolites, functional assays, and behaviors. We confirm an inverse association between LDL-cholesterol level and septicemia risk in an independent epidemiological cohort. This approach efficiently discovers biomarker-disease associations.


A MUC5B Gene Polymorphism, rs35705950-T, Confers Protective Effects Against COVID-19 Hospitalization but Not Severe Disease or Mortality.

  • Anurag Verma‎ et al.
  • American journal of respiratory and critical care medicine‎
  • 2022‎

Rationale: A common MUC5B gene polymorphism, rs35705950-T, is associated with idiopathic pulmonary fibrosis (IPF), but its role in severe acute respiratory syndrome coronavirus 2 infection and disease severity is unclear. Objectives: To assess whether rs35705950-T confers differential risk for clinical outcomes associated with coronavirus disease (COVID-19) infection among participants in the Million Veteran Program (MVP). Methods: The MUC5B rs35705950-T allele was directly genotyped among MVP participants; clinical events and comorbidities were extracted from the electronic health records. Associations between the incidence or severity of COVID-19 and rs35705950-T were analyzed within each ancestry group in the MVP followed by transancestry meta-analysis. Replication and joint meta-analysis were conducted using summary statistics from the COVID-19 Host Genetics Initiative (HGI). Sensitivity analyses with adjustment for additional covariates (body mass index, Charlson comorbidity index, smoking, asbestosis, rheumatoid arthritis with interstitial lung disease, and IPF) and associations with post-COVID-19 pneumonia were performed in MVP subjects. Measurements and Main Results: The rs35705950-T allele was associated with fewer COVID-19 hospitalizations in transancestry meta-analyses within the MVP (Ncases = 4,325; Ncontrols = 507,640; OR = 0.89 [0.82-0.97]; P = 6.86 × 10-3) and joint meta-analyses with the HGI (Ncases = 13,320; Ncontrols = 1,508,841; OR, 0.90 [0.86-0.95]; P = 8.99 × 10-5). The rs35705950-T allele was not associated with reduced COVID-19 positivity in transancestry meta-analysis within the MVP (Ncases = 19,168/Ncontrols = 492,854; OR, 0.98 [0.95-1.01]; P = 0.06) but was nominally significant (P < 0.05) in the joint meta-analysis with the HGI (Ncases = 44,820; Ncontrols = 1,775,827; OR, 0.97 [0.95-1.00]; P = 0.03). Associations were not observed with severe outcomes or mortality. Among individuals of European ancestry in the MVP, rs35705950-T was associated with fewer post-COVID-19 pneumonia events (OR, 0.82 [0.72-0.93]; P = 0.001). Conclusions: The MUC5B variant rs35705950-T may confer protection in COVID-19 hospitalizations.


Using genetics to detangle the relationships between red cell distribution width and cardiovascular diseases: a unique role for body mass index.

  • Timothy E Thayer‎ et al.
  • Open heart‎
  • 2021‎

Red cell distribution width (RDW) is an enigmatic biomarker associated with the presence and severity of multiple cardiovascular diseases (CVDs). It is unclear whether elevated RDW contributes to, results from, or is pleiotropically related to CVDs. We used contemporary genetic techniques to probe for evidence of aetiological associations between RDW, CVDs, and CVD risk factors.


Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study.

  • Hao Yu Chen‎ et al.
  • European heart journal‎
  • 2023‎

Although highly heritable, the genetic etiology of calcific aortic stenosis (AS) remains incompletely understood. The aim of this study was to discover novel genetic contributors to AS and to integrate functional, expression, and cross-phenotype data to identify mechanisms of AS.


A Metabolic Basis for Endothelial-to-Mesenchymal Transition.

  • Jianhua Xiong‎ et al.
  • Molecular cell‎
  • 2018‎

Endothelial-to-mesenchymal transition (EndoMT) is a cellular process often initiated by the transforming growth factor β (TGF-β) family of ligands. Although required for normal heart valve development, deregulated EndoMT is linked to a wide range of pathological conditions. Here, we demonstrate that endothelial fatty acid oxidation (FAO) is a critical in vitro and in vivo regulator of EndoMT. We further show that this FAO-dependent metabolic regulation of EndoMT occurs through alterations in intracellular acetyl-CoA levels. Disruption of FAO via conditional deletion of endothelial carnitine palmitoyltransferase II (Cpt2E-KO) augments the magnitude of embryonic EndoMT, resulting in thickening of cardiac valves. Consistent with the known pathological effects of EndoMT, adult Cpt2E-KO mice demonstrate increased permeability in multiple vascular beds. Taken together, these results demonstrate that endothelial FAO is required to maintain endothelial cell fate and that therapeutic manipulation of endothelial metabolism could provide the basis for treating a growing number of EndoMT-linked pathological conditions.


Hi-MC: a novel method for high-throughput mitochondrial haplogroup classification.

  • Sandra Smieszek‎ et al.
  • PeerJ‎
  • 2018‎

Effective approaches for assessing mitochondrial DNA (mtDNA) variation are important to multiple scientific disciplines. Mitochondrial haplogroups characterize branch points in the phylogeny of mtDNA. Several tools exist for mitochondrial haplogroup classification. However, most require full or partial mtDNA sequence which is often cost prohibitive for studies with large sample sizes. The purpose of this study was to develop Hi-MC, a high-throughput method for mitochondrial haplogroup classification that is cost effective and applicable to large sample sizes making mitochondrial analysis more accessible in genetic studies. Using rigorous selection criteria, we defined and validated a custom panel of mtDNA single nucleotide polymorphisms that allows for accurate classification of European, African, and Native American mitochondrial haplogroups at broad resolution with minimal genotyping and cost. We demonstrate that Hi-MC performs well in samples of European, African, and Native American ancestries, and that Hi-MC performs comparably to a commonly used classifier. Implementation as a software package in R enables users to download and run the program locally, grants greater flexibility in the number of samples that can be run, and allows for easy expansion in future revisions. Hi-MC is available in the CRAN repository and the source code is freely available at https://github.com/vserch/himc.


Association of FADS1/2 Locus Variants and Polyunsaturated Fatty Acids With Aortic Stenosis.

  • Hao Yu Chen‎ et al.
  • JAMA cardiology‎
  • 2020‎

Aortic stenosis (AS) has no approved medical treatment. Identifying etiological pathways for AS could identify pharmacological targets.


Bid maintains mitochondrial cristae structure and function and protects against cardiac disease in an integrative genomics study.

  • Christi T Salisbury-Ruf‎ et al.
  • eLife‎
  • 2018‎

Bcl-2 family proteins reorganize mitochondrial membranes during apoptosis, to form pores and rearrange cristae. In vitro and in vivo analysis integrated with human genetics reveals a novel homeostatic mitochondrial function for Bcl-2 family protein Bid. Loss of full-length Bid results in apoptosis-independent, irregular cristae with decreased respiration. Bid-/- mice display stress-induced myocardial dysfunction and damage. A gene-based approach applied to a biobank, validated in two independent GWAS studies, reveals that decreased genetically determined BID expression associates with myocardial infarction (MI) susceptibility. Patients in the bottom 5% of the expression distribution exhibit >4 fold increased MI risk. Carrier status with nonsynonymous variation in Bid's membrane binding domain, BidM148T, associates with MI predisposition. Furthermore, Bid but not BidM148T associates with Mcl-1Matrix, previously implicated in cristae stability; decreased MCL-1 expression associates with MI. Our results identify a role for Bid in homeostatic mitochondrial cristae reorganization, that we link to human cardiac disease.


Profiling of the plasma proteome across different stages of human heart failure.

  • Anna Egerstedt‎ et al.
  • Nature communications‎
  • 2019‎

Heart failure (HF) is a major public health problem characterized by inability of the heart to maintain sufficient output of blood. The systematic characterization of circulating proteins across different stages of HF may provide pathophysiological insights and identify therapeutic targets. Here we report application of aptamer-based proteomics to identify proteins associated with prospective HF incidence in a population-based cohort, implicating modulation of immunological, complement, coagulation, natriuretic and matrix remodeling pathways up to two decades prior to overt disease onset. We observe further divergence of these proteins from the general population in advanced HF, and regression after heart transplantation. By leveraging coronary sinus samples and transcriptomic tools, we describe likely cardiac and specific cellular origins for several of the proteins, including Nt-proBNP, thrombospondin-2, interleukin-18 receptor, gelsolin, and activated C5. Our findings provide a broad perspective on both cardiac and systemic factors associated with HF development.


Mechanistic phenotypes: an aggregative phenotyping strategy to identify disease mechanisms using GWAS data.

  • Jonathan D Mosley‎ et al.
  • PloS one‎
  • 2013‎

A single mutation can alter cellular and global homeostatic mechanisms and give rise to multiple clinical diseases. We hypothesized that these disease mechanisms could be identified using low minor allele frequency (MAF<0.1) non-synonymous SNPs (nsSNPs) associated with "mechanistic phenotypes", comprised of collections of related diagnoses. We studied two mechanistic phenotypes: (1) thrombosis, evaluated in a population of 1,655 African Americans; and (2) four groupings of cancer diagnoses, evaluated in 3,009 white European Americans. We tested associations between nsSNPs represented on GWAS platforms and mechanistic phenotypes ascertained from electronic medical records (EMRs), and sought enrichment in functional ontologies across the top-ranked associations. We used a two-step analytic approach whereby nsSNPs were first sorted by the strength of their association with a phenotype. We tested associations using two reverse genetic models and standard additive and recessive models. In the second step, we employed a hypothesis-free ontological enrichment analysis using the sorted nsSNPs to identify functional mechanisms underlying the diagnoses comprising the mechanistic phenotypes. The thrombosis phenotype was solely associated with ontologies related to blood coagulation (Fisher's p = 0.0001, FDR p = 0.03), driven by the F5, P2RY12 and F2RL2 genes. For the cancer phenotypes, the reverse genetics models were enriched in DNA repair functions (p = 2×10-5, FDR p = 0.03) (POLG/FANCI, SLX4/FANCP, XRCC1, BRCA1, FANCA, CHD1L) while the additive model showed enrichment related to chromatid segregation (p = 4×10-6, FDR p = 0.005) (KIF25, PINX1). We were able to replicate nsSNP associations for POLG/FANCI, BRCA1, FANCA and CHD1L in independent data sets. Mechanism-oriented phenotyping using collections of EMR-derived diagnoses can elucidate fundamental disease mechanisms.


Extraction of echocardiographic data from the electronic medical record is a rapid and efficient method for study of cardiac structure and function.

  • Quinn S Wells‎ et al.
  • Journal of clinical bioinformatics‎
  • 2014‎

Measures of cardiac structure and function are important human phenotypes that are associated with a range of clinical outcomes. Studying these traits in large populations can be time consuming and costly. Utilizing data from large electronic medical records (EMRs) is one possible solution to this problem. We describe the extraction and filtering of quantitative transthoracic echocardiographic data from the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study, a large, racially diverse, EMR-based cohort (n = 15,863).


Genetic risk for major depressive disorder and loneliness in sex-specific associations with coronary artery disease.

  • Jessica Dennis‎ et al.
  • Molecular psychiatry‎
  • 2021‎

Major depressive disorder (MDD) and loneliness are phenotypically and genetically correlated with coronary artery disease (CAD), but whether these associations are explained by pleiotropic genetic variants or shared comorbidities is unclear. To tease apart these scenarios, we first assessed the medical morbidity pattern associated with genetic risk factors for MDD and loneliness by conducting a phenome-wide association study in 18,385 European-ancestry individuals in the Vanderbilt University Medical Center biobank, BioVU. Polygenic scores for MDD and loneliness were developed for each person using previously published meta-GWAS summary statistics, and were tested for association with 882 clinical diagnoses ascertained via billing codes in electronic health records. We discovered strong associations with heart disease diagnoses, and next embarked on targeted analyses of CAD in 3893 cases and 4197 controls. We found odds ratios of 1.11 (95% CI, 1.04-1.18; P 8.43 × 10-4) and 1.13 (95% CI, 1.07-1.20; P 4.51 × 10-6) per 1-SD increase in the polygenic scores for MDD and loneliness, respectively. Results were similar in patients without psychiatric symptoms, and the increased risk persisted in females even after adjusting for multiple conventional risk factors and a polygenic score for CAD. In a final sensitivity analysis, we statistically adjusted for the genetic correlation between MDD and loneliness and re-computed polygenic scores. The polygenic score unique to loneliness remained associated with CAD (OR 1.09, 95% CI 1.03-1.15; P 0.002), while the polygenic score unique to MDD did not (OR 1.00, 95% CI 0.95-1.06; P 0.97). Our replication sample was the Atherosclerosis Risk in Communities (ARIC) cohort of 7197 European-ancestry participants (1598 incident CAD cases). In ARIC, polygenic scores for MDD and loneliness were associated with hazard ratios of 1.07 (95% CI, 0.99-1.14; P = 0.07) and 1.07 (1.01-1.15; P = 0.03), respectively, and we replicated findings from the BioVU sensitivity analyses. We conclude that genetic risk factors for MDD and loneliness act pleiotropically to increase CAD risk in females.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: