2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 1 papers out of 1 papers

Prognostic prediction of therapeutic response in depression using high-field MR imaging.

  • Qiyong Gong‎ et al.
  • NeuroImage‎
  • 2011‎

Despite significant advances in the treatment of major depression, there is a high degree of variability in how patients respond to treatment. Approximately 70% of patients show some improvement following standard antidepressant treatment and are classified as having non-refractory depressive disorder (NDD), while the remaining 30% of patients do not respond to treatment and are classified as having refractory depressive disorder (RDD). At present, there are no objective, neurological markers which can be used to identify individuals with depression and predict clinical outcome. We therefore examined the diagnostic and prognostic potential of pre-treatment structural neuroanatomy using support vector machine (SVM). Sixty-one drug-naïve adults suffering from depression and 42 healthy volunteers were scanned using structural magnetic resonance imaging (sMRI). Patients then received standard antidepressant medication (either tricyclic, typical serotonin-norepinephrine reuptake inhibitor or typical selective serotonin reuptake inhibitor). Based on clinical outcome, we selected two groups of RDD (n=23) and NDD (n=23) patients matched for age, sex and pre-treatment severity of depression. Diagnostic accuracy of gray matter was 67.39% for RDD (p=0.01) and 76.09% for NDD (p<0.001), while diagnostic accuracy of white matter was 58.70% for RDD (p=0.13) and 84.65% for NDD (p<0.001). SVM applied to gray matter correctly distinguished between RDD and NDD patients with an accuracy of 69.57% (p=0.006); in contrast, SVM applied to white matter predicted clinical outcome with an accuracy of 65.22% (p=0.02). These results indicate that both gray and white matter have diagnostic and prognostic potential in major depression and may provide an initial step towards the use of biological markers to inform clinical treatment. Future studies will benefit from the integration of structural neuroimaging with other imaging modalities as well as genetic, clinical and cognitive information.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: