2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 137 papers

Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products.

  • Xiuna Wang‎ et al.
  • BMC genomics‎
  • 2015‎

In recent years, the genus Pestalotiopsis is receiving increasing attention, not only because of its economic impact as a plant pathogen but also as a commonly isolated endophyte which is an important source of bioactive natural products. Pestalotiopsis fici Steyaert W106-1/CGMCC3.15140 as an endophyte of tea produces numerous novel secondary metabolites, including chloropupukeananin, a derivative of chlorinated pupukeanane that is first discovered in fungi. Some of them might be important as the drug leads for future pharmaceutics.


Surf4 (Erv29p) binds amino-terminal tripeptide motifs of soluble cargo proteins with different affinities, enabling prioritization of their exit from the endoplasmic reticulum.

  • Ying Yin‎ et al.
  • PLoS biology‎
  • 2018‎

Some secreted proteins that assemble into large complexes, such as extracellular matrices or hormones and enzymes in storage granules, must be kept at subaggregation concentrations during intracellular trafficking. We show surfeit locus protein 4 (Surf4) is the cargo receptor that establishes different steady-state concentrations for a variety of soluble cargo proteins within the endoplasmic reticulum (ER) through interaction with the amino-terminal tripeptides exposed after removal of leader sequences. We call this motif the ER-Exit by Soluble Cargo using Amino-terminal Peptide-Encoding motif (ER-ESCAPE motif). Proteins that most readily aggregate in the ER lumen (e.g., dentin sialophosphoprotein [DSPP] and amelogenin, X-linked [AMELX]) have strong ER-ESCAPE motifs to inhibit aggregate formation, while less susceptible cargo exhibits weaker motifs. Specific changes in a single amino acid of the tripeptide result in aggregate formation and failure to efficiently traffic cargo out of the ER. A logical subset of 8,000 possible tripeptides starting a model soluble cargo protein (growth hormone) established a continuum of steady-state ER concentrations ranging from low (i.e., high affinity for receptor) to the highest concentrations associated with bulk flow-limited trafficking observed for nonbinding motifs. Human cells lacking Surf4 no longer preferentially trafficked cargo expressing strong ER-ESCAPE motifs. Reexpression of Surf4 or expression of yeast's ortholog, ER-derived vesicles protein 29 (Erv29p), rescued enhanced ER trafficking in Surf4-null cells. Hence our work describes a new way of preferentially exporting soluble cargo out of the ER that maintains proteins below the concentrations at which they form damaging aggregates.


Duplication of a Pks gene cluster and subsequent functional diversification facilitate environmental adaptation in Metarhizium species.

  • Guohong Zeng‎ et al.
  • PLoS genetics‎
  • 2018‎

The ecological importance of the duplication and diversification of gene clusters that synthesize secondary metabolites in fungi remains poorly understood. Here, we demonstrated that the duplication and subsequent diversification of a gene cluster produced two polyketide synthase gene clusters in the cosmopolitan fungal genus Metarhizium. Diversification occurred in the promoter regions and the exon-intron structures of the two Pks paralogs (Pks1 and Pks2). These two Pks genes have distinct expression patterns, with Pks1 highly expressed during conidiation and Pks2 highly expressed during infection. Different upstream signaling pathways were found to regulate the two Pks genes. Pks1 is positively regulated by Hog1-MAPK, Slt2-MAPK and Mr-OPY2, while Pks2 is positively regulated by Fus3-MAPK and negatively regulated by Mr-OPY2. Pks1 and Pks2 have been subjected to positive selection and synthesize different secondary metabolites. PKS1 is involved in synthesis of an anthraquinone derivative, and contributes to conidial pigmentation, which plays an important role in fungal tolerance to UV radiation and extreme temperatures. Disruption of the Pks2 gene delayed formation of infectious structures and increased the time taken to kill insects, indicating that Pks2 contributes to pathogenesis. Thus, the duplication of a Pks gene cluster and its subsequent functional diversification has increased the adaptive flexibility of Metarhizium species.


Evolution of the chitin synthase gene family correlates with fungal morphogenesis and adaption to ecological niches.

  • Ran Liu‎ et al.
  • Scientific reports‎
  • 2017‎

The fungal kingdom potentially has the most complex chitin synthase (CHS) gene family, but evolution of the fungal CHS gene family and its diversification to fulfill multiple functions remain to be elucidated. Here, we identified the full complement of CHSs from 231 fungal species. Using the largest dataset to date, we characterized the evolution of the fungal CHS gene family using phylogenetic and domain structure analysis. Gene duplication, domain recombination and accretion are major mechanisms underlying the diversification of the fungal CHS gene family, producing at least 7 CHS classes. Contraction of the CHS gene family is morphology-specific, with significant loss in unicellular fungi, whereas family expansion is lineage-specific with obvious expansion in early-diverging fungi. ClassV and ClassVII CHSs with the same domain structure were produced by the recruitment of domains PF00063 and PF08766 and subsequent duplications. Comparative analysis of their functions in multiple fungal species shows that the emergence of ClassV and ClassVII CHSs is important for the morphogenesis of filamentous fungi, development of pathogenicity in pathogenic fungi, and heat stress tolerance in Pezizomycotina fungi. This work reveals the evolution of the fungal CHS gene family, and its correlation with fungal morphogenesis and adaptation to ecological niches.


Bmi-1 absence causes premature brain degeneration.

  • Guangliang Cao‎ et al.
  • PloS one‎
  • 2012‎

Bmi-1, a polycomb transcriptional repressor, is implicated in cell cycle regulation and cell senescence. Its absence results in generalized astrogliosis and epilepsy during the postnatal development, but the underlying mechanisms are poorly understood. Here, we demonstrate the occurrence of oxidative stress in the brain of four-week-old Bmi-1 null mice. The mice showed various hallmarks of neurodegeneration including synaptic loss, axonal demyelination, reactive gliosis and brain mitochondrial damage. Moreover, astroglial glutamate transporters and glutamine synthetase decreased in the Bmi-1 null hippocampus, which might contribute to the sporadic epileptic-like seizures in these mice. These results indicate that Bmi-1 is required for maintaining endogenous antioxidant defenses in the brain, and its absence subsequently causes premature brain degeneration.


Metabolic Conservation and Diversification of Metarhizium Species Correlate with Fungal Host-Specificity.

  • Yong-Jiang Xu‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

The ascomycete genus Metarhizium contains several species of insect pathogenic fungi ranging from specialists with narrow host ranges to generalists that can infect diverse invertebrates. Genetic and metabolic conservations and diversifications of Metarhizium species are not well understood. In this study, using the genome information of seven Metarhizium species, we performed a comparative analysis of gene clusters involved in secondary metabolisms (SMs) in these species. The results revealed that the generalist species contain more SM gene clusters than the specialists, and that both conserved and divergent evolutions may have occurred in SM genes during fungal speciation. In particular, the loss/gain events, as well as gene mutagenesis, are evident for the gene cluster responsible for the biosynthesis of non-ribosomal cyclopeptide destruxins. The presence of conserved SM gene clusters in Metarhizium and other divergently evolved insect pathogenic fungi implies their link to fungal entomopathogenicity. Mass spectrometry based metabolomic analyses were also conducted to investigate the chemical diversities of seven Metarhizium species. Consistent with the evolutionary relationships of SM genes among the seven species, significant differences are observed in fungal metabolic profiles, whether the same or different metabolites are produced in different species. Clustering analysis based on the metabolome data revealed that Metarhizium species could be grouped based on their association to fungal host specificity. Our metabolomics-based methods also facilitate the identification of bioactive metabolites that have not been reported previously in Metarhizium. The results of this study will benefit future investigations of the chemical biology of insect-fungal interactions.


Neuroprotective effects of protocatechuic aldehyde through PLK2/p-GSK3β/Nrf2 signaling pathway in both in vivo and in vitro models of Parkinson's disease.

  • Chao Guo‎ et al.
  • Aging‎
  • 2019‎

Mitochondrial dysfunction and oxidative damage are closely related to the pathogenesis of Parkinson's disease (PD). The pharmacological mechanism of protocatechuic aldehyde (PCA) for PD treatment have retained unclear. The purposes of the present study were to clarify the neuroprotective effects of post-treatment of PCA for PD treatment by mitigating mitochondrial dysfunction and oxidative damage, and to further determine whether its effects were mediated by the polo-like kinase 2/phosphorylated glycogen synthase kinase 3 β/nuclear factor erythroid-2-related factor 2 (PLK2/p-GSK3β/Nrf2) pathways. We found that PCA improved 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced behavioral deficits and dopaminergic cell loss. Moreover, PCA increased the expressions of PLK2, p-GSK3β and Nrf2, following the decrease of α-synuclein (α-Syn) in MPTP-intoxicated mice. Cell viability was increased and the apoptosis rate was reduced by PCA in 1-methyl-4-phenylpyridinium iodide (MPP+)-incubated cells. Mitochondrial membrane potential (MMP), mitochondrial complex I activity and reactive oxygen species (ROS) levels in MPP+-incubated cells were also ameliorated by treatment with PCA. The neuroprotective effects of PCA were abolished by inhibition or knockdown of PLK2, whereas overexpression of PLK2 strengthened the protection of PCA. Furthermore, GSK3β and Nrf2 were involved in PCA-induced protection. These results indicated that PCA has therapeutic effects on PD by the PLK2/p-GSK3β/Nrf2 pathway.


Increase rate of light-induced stomatal conductance is related to stomatal size in the genus Oryza.

  • Qiangqiang Zhang‎ et al.
  • Journal of experimental botany‎
  • 2019‎

The rapid response of stomatal conductance (gs) to fluctuating irradiance is of great importance to maximize carbon assimilation while minimizing water loss. Smaller stomata have been proven to have a faster response rate than larger ones, but most of these studies have been conducted with forest trees. In the present study, the effects of stomatal anatomy on the kinetics of gs and photosynthesis were investigated in 16 Oryza genotypes. Light-induced stomatal opening includes an initial time lag (λ) followed by an exponential increase. Smaller stomata had a larger maximum stomatal conductance increase rate (Slmax) during the exponential increase phase, but showed a longer time lag and a lower initial stomatal conductance (gs,initial) at low light. Stomatal size was, surprisingly, negatively correlated with the time required to reach 50% of maximum gs and photosynthesis (T50%gs and T50%A), which was shown to be positively correlated with λ and negatively correlated with gs,initial. With a lower gs,initial and a larger λ, small stomata showed a faster decrease of intercellular CO2 concentration (Ci) during the induction process, which may have led to a slower apparent Rubisco activation rate. Therefore, smaller stomata do not always benefit photosynthesis as reported before; the influence of stomatal size on dynamic photosynthesis is also correlated with λ and gs,initial.


H3.3 impedes zygotic transcriptional program activated by Dux.

  • Qing Tian‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

During development, fertilization triggers totipotency establishment, featured by zygotic genome activation/embryonic genome activation (ZGA/EGA). Mouse embryonic stem cells (mESCs) occasionally cycle through a two-cell (2C)-like status with activated expression of Dux and its targeted ZGA genes. Here, we demonstrate that deficiency of histone variant H3.3 dramatically stimulates expression of ZGA genes in mESCs. Our analysis revealed that H3.3 directly associates with Dux locus and inhibits Dux expression, therefore it is an important upstream regulator of Dux. Our finding is further supported by transcriptome change in early mouse embryos with H3.3 knockdown. We suggest that proper H3.3 level in early embryos is important to orchestrate ZGA activity for totipotency establishment.


A novel built-in adjuvant metallothionein-3 aids protein antigens to induce rapid, robust, and durable immune responses.

  • Ying Yin‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Adjuvants are crucial components of vaccines that can enhance and modulate antigen-specific immune responses. Herein, we reported for the first time that human metallothionein-3 (MT3), a low molecular weight cysteine-rich metal-binding protein, was a novel promising adjuvant candidate that could help protein antigens to induce rapid, effective, and durable antigen-specific immune responses. In the present study, MT3 was fused to outer membrane protein 19 (Omp19) of Brucella abortus (MT3-Omp19, MO) and C fragment heavy chain (Hc) of tetanus neurotoxin (MT3-Hc, MH), respectively. The results showed that MT3 as a built-in adjuvant increased the Omp19- or Hc-specific antibody responses by 100-1000 folds in seven days after primary immunization. Compared to other commercially available adjuvants, MT3 could stimulate earlier (4 days after primary injection) and stronger (10-100 folds) antibody response with lower antigen dose, and its adjuvanticity relied on fusion to antigen. Although the mechanism was not clear yet, the fusion protein MO was observed to directly activate DCs, promote germinal center formation and improve the speed of Ig class switching. Interestingly, our subsequent study found that other members of the mammalian MT family (human MT1 or murine MT3 for examples) also had potential adjuvant effects, but their effects were lower than human MT3. Overall, this study explored a new function of human MT3 as a novel built-in adjuvant, which may have important clinical application potential in vaccine development against global pandemics.


Metabolic lactate production coordinates vasculature development and progenitor behavior in the developing mouse neocortex.

  • Xiaoxiang Dong‎ et al.
  • Nature neuroscience‎
  • 2022‎

Proper neural progenitor behavior in conjunction with orderly vasculature formation is fundamental to the development of the neocortex. However, the mechanisms coordinating neural progenitor behavior and vessel growth remain largely elusive. Here we show that robust metabolic production of lactate by radial glial progenitors (RGPs) co-regulates vascular development and RGP division behavior in the developing mouse neocortex. RGPs undergo a highly organized lineage progression program to produce diverse neural progeny. Systematic single-cell metabolic state analysis revealed that RGPs and their progeny exhibit distinct metabolic features associated with specific cell types and lineage progression statuses. Symmetrically dividing, proliferative RGPs preferentially express a cohort of genes that support glucose uptake and anaerobic glycolysis. Consequently, they consume glucose in anaerobic metabolism and produce a high level of lactate, which promotes vessel growth. Moreover, lactate production enhances RGP proliferation by maintaining mitochondrial length. Together, these results suggest that specific metabolic states and metabolites coordinately regulate vasculature formation and progenitor behavior in neocortical development.


Biomimetic piezoelectric nanocomposite membranes synergistically enhance osteogenesis of deproteinized bovine bone grafts.

  • Yunyang Bai‎ et al.
  • International journal of nanomedicine‎
  • 2019‎

Purpose: The combination of a bone graft with a barrier membrane is the classic method for guided bone regeneration (GBR) treatment. However, the insufficient osteoinductivity of currently-available barrier membranes and the consequent limited bone regeneration often inhibit the efficacy of bone repair. In this study, we utilized the piezoelectric properties of biomaterials to enhance the osteoinductivity of barrier membranes. Methods: A flexible nanocomposite membrane mimicking the piezoelectric properties of natural bone was utilized as the barrier membrane. Its therapeutic efficacy in repairing critical-sized rabbit mandible defects in combination with xenogenic grafts of deproteinized bovine bone (DBB) was explored. The nanocomposite membranes were fabricated with a homogeneous distribution of piezoelectric BaTiO3 nanoparticles (BTO NPs) embedded within a poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix. Results: The piezoelectric coefficient of the polarized nanocomposite membranes was close to that of human bone. The piezoelectric coefficient of the polarized nanocomposite membranes was highly stable, with more than 90% of the original piezoelectric coefficient (d33) remaining up to 28 days after immersion in culture medium. Compared with commercially-available polytetrafluoroethylene (PTFE) membranes, the polarized BTO/P(VDF-TrFE) nanocomposite membranes exhibited higher osteoinductivity (assessed by immunofluorescence staining for runt-related transcription factor 2 (RUNX-2) expression) and induced significantly earlier neovascularization and complete mature bone-structure formation within the rabbit mandible critical-sized defects after implantation with DBB Bio-Oss® granules. Conclusion: Our findings thus demonstrated that the piezoelectric BTO/P(VDF-TrFE) nanocomposite membranes might be suitable for enhancing the clinical efficacy of GBR.


Population genomics and evolution of a fungal pathogen after releasing exotic strains to control insect pests for 20 years.

  • Lijuan Mei‎ et al.
  • The ISME journal‎
  • 2020‎

Entomopathogenic fungi are one of the key regulators of insect populations in nature. Some species such as Beauveria bassiana with a wide host range have been developed as promising alternatives to chemical insecticides for the biocontrol of insect pests. However, the long-term persistence of the released strains, the effect on non-target hosts and local fungal populations remains elusive, but they are considerable concerns with respect to environmental safety. Here we report the temporal features of the Beauveria population genomics and evolution over 20 years after releasing exotic strains to control pine caterpillar pests. We found that the isolates within the biocontrol site were mostly of clonal origins. The released strains could persist in the environment for a long time but with low recovery rates. Similar to the reoccurrence of host jumping by local isolates, the infection of non-target insects by the released strains was evident to endemically occur in association with host seasonality. No obvious dilution effect on local population structure was evident by the releases. However, the population was largely replaced by genetically divergent isolates once per decade but evolved with a pattern of balancing selection and towards expansion through adaptation, non-random outcrossing and isolate migration. This study not only unveils the real-time features of entomopathogenic fungal population genomics and evolution but also provides added values to alleviate the concerns of environmental safety regarding the biocontrol application of mycoinsecticides.


Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence.

  • Xiwen Tong‎ et al.
  • PLoS genetics‎
  • 2020‎

Metarhizium is a group of insect-pathogenic fungi that can produce insecticidal metabolites, such as destruxins. Interestingly, the acridid-specific fungus Metarhizium acridum (MAC) can kill locusts faster than the generalist fungus Metarhizium robertsii (MAA) even without destruxin. However, the underlying mechanisms of different pathogenesis between host-generalist and host-specialist fungi remain unknown. This study compared transcriptomes and metabolite profiles to analyze the difference in responsiveness of locusts to MAA and MAC infections. Results confirmed that the detoxification and tryptamine catabolic pathways were significantly enriched in locusts after MAC infection compared with MAA infection and that high levels of tryptamine could kill locusts. Furthermore, tryptamine was found to be capable of activating the aryl hydrocarbon receptor of locusts (LmAhR) to produce damaging effects by inducing reactive oxygen species production and immune suppression. Therefore, reducing LmAhR expression by RNAi or inhibitor (SR1) attenuates the lethal effects of tryptamine on locusts. In addition, MAA, not MAC, possessed the monoamine oxidase (Mao) genes in tryptamine catabolism. Hence, deleting MrMao-1 could increase the virulence of generalist MAA on locusts and other insects. Therefore, our study provides a rather feasible way to design novel mycoinsecticides by deleting a gene instead of introducing any exogenous gene or domain.


Tolypocladamide H and the Proposed Tolypocladamide NRPS in Tolypocladium Species.

  • Richard M Tehan‎ et al.
  • Journal of natural products‎
  • 2022‎

The genome of entomopathogenic fungus Tolypocladium inflatum Gams encodes 43 putative biosynthetic gene clusters for specialized metabolites, although genotype-phenotype linkages have been reported only for the cyclosporins and fumonisins. T. inflatum was cultured in defined minimal media, supplemented with or without one of nine different amino acids. Acquisition of LC-MS/MS data for molecular networking and manual analysis facilitated annotation of putative known and unknown metabolites. These data led us to target a family of peptaibols and guided the isolation and purification of tolypocladamide H (1), which showed modest antibacterial activity and toxicity to mammalian cells at micromolar concentrations. HRMS/MS, NMR, and advanced Marfey's analysis were used to assign the structure of 1 as a peptaibol containing 4-[(E)-2-butenyl]-4-methyl-l-threonine (Bmt), a hallmark structural motif of the cyclosporins. LC-MS detection of homologous tolypocladamide metabolites and phylogenomic analyses of peptaibol biosynthetic genes in other cultured Tolypocladium species allowed assignment of a putative tolypocladamide nonribosomal peptide synthetase gene.


Production of Helvolic Acid in Metarhizium Contributes to Fungal Infection of Insects by Bacteriostatic Inhibition of the Host Cuticular Microbiomes.

  • Yanlei Sun‎ et al.
  • Microbiology spectrum‎
  • 2022‎

The nortriterpenoid helvolic acid (HA) has potent antibiotic activities and can be produced by different fungi, yet HA function remains elusive. Here, we report the chemical biology of HA production in the insect pathogen Metarhizium robertsii. After deletion of the core oxidosqualene cyclase gene in Metarhizium, insect survival rates were significantly increased compared to those of insects treated with the wild type and the gene-rescued strain during topical infections but not during injection assays to bypass insect cuticles. Further gnotobiotic infection of axenic Drosophila adults confirmed the HA contribution to fungal infection by inhibiting bacterial competitors in an inoculum-dependent manner. Loss of HA production substantially impaired fungal spore germination and membrane penetration abilities relative to the WT and gene-complemented strains during challenge with different Gram-positive bacteria. Quantitative microbiome analysis revealed that HA production could assist the fungus to suppress the Drosophila cuticular microbiomes by exerting a bacteriostatic rather than bactericidal effect. Our data unveil the chemical ecology of HA and highlight the fact that fungal pathogens have to cope with the host cuticular microbiomes prior to successful infection of hosts. IMPORTANCE Emerging evidence has shown that the plant and animal surface microbiomes can defend hosts against fungal parasite infections. The strategies employed by fungal pathogens to combat the antagonistic inhibition of insect surface bacteria are still elusive. In this study, we found that the potent antibiotic helvolic acid (HA) produced by the insect pathogen Metarhizium robertsii contributes to natural fungal infection of insect hosts. Antibiotic and gnotobiotic infection assays confirmed that HA could facilitate fungal infection of insects by suppression of the host cuticular microbiomes through its bacteriostatic instead of bactericidal activities. The data from this study provide insights into the novel chemical biology of fungal secondary metabolisms.


Orchestrated Biosynthesis of the Secondary Metabolite Cocktails Enables the Producing Fungus to Combat Diverse Bacteria.

  • Yanlei Sun‎ et al.
  • mBio‎
  • 2022‎

Fungal secondary metabolites with antibiotic activities can promote fungal adaptation to diverse environments. Besides the global regulator, individual biosynthetic gene clusters (BGCs) usually contain a pathway-specific transcription factor for the tight regulation of fungal secondary metabolism. Here, we report the chemical biology mediated by a supercluster containing three BGCs in the entomopathogenic fungus Metarhizium robertsii. These clusters are jointly controlled by an embedded transcription factor that orchestrates the collective production of four classes of chemicals: ustilaginoidin, indigotide, pseurotin, and hydroxyl-ovalicin. The ustilaginoidin BGC is implicated as a late-acquired cluster in Metarhizium to produce both the bis-naphtho-γ-pyrones and the monomeric naphtho-γ-pyrone glycosides (i.e., indigotides). We found that the biosynthesis of indigotides additionally requires the functions of paired methylglucosylation genes located outside the supercluster. The pseurotin/ovalicin BGCs are blended and mesosyntenically conserved to the intertwined pseurotin/fumagillin BGCs of Aspergillus fumigatus. However, the former have lost a few genes, including a polyketide synthase gene responsible for the production of a pentaene chain used for assembly with ovalicin to form fumagillin, as observed in A. fumigatus. The collective production of chemical cocktails by this supercluster was dispensable for fungal virulence against insects and could enable the fungus to combat different bacteria better than the metabolite(s) produced by an individual BGC could. Thus, our results unveil a novel strategy employed by fungi to manage chemical ecology against diverse bacteria. IMPORTANCE Fungal chemical ecology is largely mediated by the metabolite(s) produced by individual biosynthetic gene clusters (BGCs) with antibiotic activities. We report a supercluster containing three BGCs that are jointly controlled by an embedded master regulator in the insect pathogen Metarhizium robertsii. Four classes of chemicals, namely, ustilaginoidin, indigotide, pseurotin, and hydroxyl-ovalicin, are collectively produced by these three BGCs along with the contributions of tailoring enzyme genes located outside the supercluster. The production of these metabolites is not required for the fungal infection of insect hosts, but it benefits the fungus to combat diverse bacteria. The findings reveal and advocate a "the-more-the-better" strategy employed by fungi to manage effective adaptations to diverse environments.


Profiling of MicroRNAs Involved in Mepiquat Chloride-Mediated Inhibition of Internode Elongation in Cotton (Gossypium hirsutum L.) Seedlings.

  • Li Wang‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Mepiquat chloride (MC) is the most important plant growth retardant that is widely used in cotton (Gossypium hirsutum L.) production to suppress excessive vegetative growth and improve plant architecture. MicroRNAs (miRNAs) are important gene expression regulators that control plant growth and development. However, miRNA-mediated post-transcriptional regulation in MC-induced growth inhibition remains unclear. In this study, the dynamic expression profiles of miRNAs responsive to MC in cotton internodes were investigated. A total of 508 known miRNAs belonging to 197 families and five novel miRNAs were identified. Among them, 104 miRNAs were differentially expressed at 48, 72, or 96 h post MC treatment compared with the control (0 h); majority of them were highly conserved miRNAs. The number of differentially expressed miRNAs increased with time after treatment. The expression of 14 known miRNAs was continuously suppressed, whereas 12 known miRNAs and one novel miRNA were continuously induced by MC. The expression patterns of the nine differentially expressed miRNAs were verified using qRT-PCR. The targets of the known and novel miRNAs were predicted. Four conserved and six novel targets were validated using the RLM-5' RACE assay. This study revealed that miRNAs play crucial regulatory roles in the MC-induced inhibition of internode elongation. It can improve our understanding of post-transcriptional gene regulation in MC-mediated growth inhibition and could potentially facilitate the breeding of dwarf cotton.


Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries.

  • Xing Shen‎ et al.
  • Nature communications‎
  • 2021‎

Na-ion batteries have been considered promising candidates for stationary energy storage. However, their wide application is hindered by issues such as high cost and insufficient electrochemical performance, particularly for cathode materials. Here, we report a solvent-free mechanochemical protocol for the in-situ fabrication of sodium vanadium fluorophosphates. Benefiting from the nano-crystallization features and extra Na-storage sites achieved in the synthesis process, the as-prepared carbon-coated Na3(VOPO4)2F nanocomposite exhibits capacity of 142 mAh g-1 at 0.1C, higher than its theoretical capacity (130 mAh g-1). Moreover, a scaled synthesis with 2 kg of product was conducted and 26650-prototype cells were demonstrated to proof the electrochemical performance. We expect our findings to mark an important step in the industrial application of sodium vanadium fluorophosphates for Na-ion batteries.


Acetylation halts missense mutant p53 aggregation and rescues tumor suppression in non-small cell lung cancers.

  • Daxing Xu‎ et al.
  • iScience‎
  • 2023‎

TP53 mutations are ubiquitous with tumorigenesis in non-small cell lung cancers (NSCLC). By analyzing the TCGA database, we reported that TP53 missense mutations are correlated with chromosomal instability and tumor mutation burden in NSCLC. The inability of wild-type nor mutant p53 expression can't predict survival in lung cancer cohorts, however, an examination of primary NSCLC tissues found that acetylated p53 did yield an association with improved survival outcomes. Molecularly, we demonstrated that acetylation drove the ubiquitination and degradation of mutant p53 but enhanced stability of wild-type p53. Moreover, acetylation of a missense p53 mutation prevented the gain of oncogenic function observed in typical TP53 mutant-expressing cells and enhanced tumor suppressor functions. Consequently, acetylation inducer targeting of missense mutant p53 may be a viable therapeutic goal for NSCLC treatment and may improve the accuracy of current efforts to utilize p53 mutations in a prognostic manner.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: