Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies.

  • Priyanka Srivastava‎ et al.
  • Scientific reports‎
  • 2023‎

Ratiometric green-red fluorescent nanosensors for fluorometrically monitoring pH in the acidic range were designed from 80 nm-sized polystyrene (PS) and silica (SiO2) nanoparticles (NPs), red emissive reference dyes, and a green emissive naphthalimide pH probe, analytically and spectroscopically characterized, and compared regarding their sensing performance in aqueous dispersion and in cellular uptake studies. Preparation of these optical probes, which are excitable by 405 nm laser or LED light sources, involved the encapsulation of the pH-inert red-fluorescent dye Nile Red (NR) in the core of self-made carboxylated PSNPs by a simple swelling procedure and the fabrication of rhodamine B (RhB)-stained SiO2-NPs from a silane derivative of pH-insensitive RhB. Subsequently, the custom-made naphthalimide pH probe, that utilizes a protonation-controlled photoinduced electron transfer process, was covalently attached to the carboxylic acid groups at the surface of both types of NPs. Fluorescence microscopy studies with the molecular and nanoscale optical probes and A549 lung cancer cells confirmed the cellular uptake of all probes and their penetration into acidic cell compartments, i.e., the lysosomes, indicated by the switching ON of the green naphthalimide fluorescence. This underlines their suitability for intracellular pH sensing, with the SiO2-based nanosensor revealing the best performance regarding uptake speed and stability.


Skeletal muscle myosin promotes coagulation by binding factor XI via its A3 domain and enhancing thrombin-induced factor XI activation.

  • Shravan Morla‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Skeletal muscle myosin (SkM) has been shown to possess procoagulant activity; however, the mechanisms of this coagulation-enhancing activity involving plasma coagulation pathways and factors are incompletely understood. Here, we discovered direct interactions between immobilized SkM and coagulation factor XI (FXI) using biolayer interferometry (Kd = 0.2 nM). In contrast, we show that prekallikrein, a FXI homolog, did not bind to SkM, reflecting the specificity of SkM for FXI binding. We also found that the anti-FXI monoclonal antibody, mAb 1A6, which recognizes the Apple (A) 3 domain of FXI, potently inhibited binding of FXI to immobilized SkM, implying that SkM binds FXI A3 domain. In addition, we show that SkM enhanced FXI activation by thrombin in a concentration-dependent manner. We further used recombinant FXI chimeric proteins in which each of the four A domains of the heavy chain (designated A1 through A4) was individually replaced with the corresponding A domain from prekallikrein to investigate SkM-mediated enhancement of thrombin-induced FXI activation. These results indicated that activation of two FXI chimeras with substitutions of either the A3 domains or A4 domains was not enhanced by SkM, whereas substitution of the A2 domain did not reduce the thrombin-induced activation compared with wildtype FXI. These data strongly suggest that functional interaction sites on FXI for SkM involve the A3 and A4 domains. Thus, this study is the first to reveal and support the novel intrinsic blood coagulation pathway concept that the procoagulant mechanisms of SkM include FXI binding and enhancement of FXI activation by thrombin.


Bacillus subtilis Histidine Kinase KinC Activates Biofilm Formation by Controlling Heterogeneity of Single-Cell Responses.

  • Zhuo Chen‎ et al.
  • mBio‎
  • 2022‎

In Bacillus subtilis, biofilm and sporulation pathways are both controlled by a master regulator, Spo0A, which is activated by phosphorylation via a phosphorelay-a cascade of phosphotransfer reactions commencing with autophosphorylation of histidine kinases KinA, KinB, KinC, KinD, and KinE. However, it is unclear how the kinases, despite acting via the same regulator, Spo0A, differentially regulate downstream pathways, i.e., how KinA mainly activates sporulation genes and KinC mainly activates biofilm genes. In this work, we found that KinC also downregulates sporulation genes, suggesting that KinC has a negative effect on Spo0A activity. To explain this effect, with a mathematical model of the phosphorelay, we revealed that unlike KinA, which always activates Spo0A, KinC has distinct effects on Spo0A at different growth stages: during fast growth, KinC acts as a phosphate source and activates Spo0A, whereas during slow growth, KinC becomes a phosphate sink and contributes to decreasing Spo0A activity. However, under these conditions, KinC can still increase the population-mean biofilm matrix production activity. In a population, individual cells grow at different rates, and KinC would increase the Spo0A activity in the fast-growing cells but reduce the Spo0A activity in the slow-growing cells. This mechanism reduces single-cell heterogeneity of Spo0A activity, thereby increasing the fraction of cells that activate biofilm matrix production. Thus, KinC activates biofilm formation by controlling the fraction of cells activating biofilm gene expression. IMPORTANCE In many bacterial and eukaryotic systems, multiple cell fate decisions are activated by a single master regulator. Typically, the activities of the regulators are controlled posttranslationally in response to different environmental stimuli. The mechanisms underlying the ability of these regulators to control multiple outcomes are not understood in many systems. By investigating the regulation of Bacillus subtilis master regulator Spo0A, we show that sensor kinases can use a novel mechanism to control cell fate decisions. By acting as a phosphate source or sink, kinases can interact with one another and provide accurate regulation of the phosphorylation level. Moreover, this mechanism affects the cell-to-cell heterogeneity of the transcription factor activity and eventually determines the fraction of different cell types in the population. These results demonstrate the importance of intercellular heterogeneity for understanding the effects of genetic perturbations on cell fate decisions. Such effects can be applicable to a wide range of cellular systems.


In vitro coronal protein signatures and biological impact of silver nanoparticles synthesized with different natural polymers as capping agents.

  • Priyanka Srivastava‎ et al.
  • Nanoscale advances‎
  • 2021‎

Biopolymer-capped particles, sodium alginate-, gelatin- and reconstituted silk fibroin-capped nanosilver (AgNPs), were synthesized with an intention to study, simultaneously, their in vitro and in vivo haemocompatibility, one of the major safety factors in biomedical applications. Solid state characterization showed formation of spherical nanoparticles with 5 to 30 nm primary sizes (transmission electron microscopy) and X-ray photoelectron spectroscopy analysis of particles confirmed silver bonding with the biopolymer moieties. The degree of aggregation of the biopolymer-capped AgNPs in the synthesis medium (ultrapure water) is relatively low, with comparable hydrodynamic size with those of the control citrate-stabilized NPs, and remained relatively unchanged even after 6 weeks. The polymer-capped nanoparticles showed different degrees of aggregation in biologically relevant media - PBS (pH 7.4) and 2% human blood plasma - with citrate- (control) and alginate-capped particles showing the highest aggregation, while gelatin- and silk fibroin-capped particles revealed better stability and less aggregation in these media. In vitro cytotoxicity studies revealed that the polymer-capped particles exhibited both concentration and (hydrodynamic) size-dependent haemolytic activity, the extent of which was higher (up to 100% in some cases) in collected whole blood samples of healthy human volunteers when compared to that in the washed erythrocytes. This difference is thought to result from the detected protein corona formation on the nanoparticle surface in the whole blood system, which was associated with reduced particle aggregation, causing more severe cytotoxic effects. At the tested particle concentration range in vitro, we observed a negligible haemolysis effect in vivo (Balb/c mice). Polymer-capped particles did accumulate in organs, with the highest levels detected in the liver (up to 422 μg per g tissue), yet no adverse behavioural effects were observed in the mice during the duration of the nanoparticle exposure.


Impact of MMP-3 and TIMP-3 gene polymorphisms on prostate cancer susceptibility in North Indian cohort.

  • Priyanka Srivastava‎ et al.
  • Gene‎
  • 2013‎

Matrix metalloproteinases (MMPs) have been implicated in progression and metastases of different tumors. The balance between the MMPs and their natural inhibitors (tissue inhibitors of matrix metalloproteinases; TIMP) seem to be an important factor related to its role. The purpose of this study was to evaluate polymorphisms in the MMP-3 and TIMP-3 genes for their associations with prostate cancer (PCa) risk in North Indians.


Scan, dwell, decide: Strategies for detecting abnormalities in diabetic retinopathy.

  • Samrudhdhi B Rangrej‎ et al.
  • PloS one‎
  • 2018‎

Diabetic retinopathy (DR) is a disease which is widely diagnosed using (colour fundus) images. Efficiency and accuracy are critical in diagnosing DR as lack of timely intervention can lead to irreversible visual impairment. In this paper, we examine strategies for scrutinizing images which affect diagnostic performance of medical practitioners via an eye-tracking study. A total of 56 subjects with 0 to 18 years of experience participated in the study. Every subject was asked to detect DR from 40 images. The findings indicate that practitioners use mainly two types of strategies characterized by either higher dwell duration or longer track length. The main findings of the study are that higher dwell-based strategy led to higher average accuracy (> 85%) in diagnosis, irrespective of the expertise of practitioner; whereas, the average obtained accuracy with a long-track length-based strategy was dependent on the expertise of the practitioner. In the second part of the paper, we use the experimental findings to recommend a scanning strategy for fast and accurate diagnosis of DR that can be potentially used by image readers. This is derived by combining the eye-tracking gaze maps of medical experts in a novel manner based on a set of rules. This strategy requires scrutiny of images in a manner which is consistent with spatial preferences found in human perception in general and in the domain of fundus images in particular. The Levenshtein distance-based assessment of gaze patterns also establish the effectiveness of the derived scanning pattern and is thus recommended for image readers.


Neurofibromatosis type 1: Clinical characteristics and mutation spectrum in a North Indian cohort.

  • Priyanka Srivastava‎ et al.
  • Heliyon‎
  • 2024‎

Neurofibromatosis type 1 (NF1) is a unique, highly penetrant neuro-cutaneous disorder with a wide range of manifestations. Though the clinical diagnosis of NF1 is straight forward, there can be other disorders which mimic NF1, especially its cutaneous features. Here we describe the clinical and mutation spectrum of a series of individuals whose primary diagnosis was NF1 or NF1 related disorders.


Rapid-prenatal diagnosis through fluorescence in situ hybridization for preventing aneuploidy related birth defects.

  • Ashish Fauzdar‎ et al.
  • Indian journal of human genetics‎
  • 2013‎

Women with high-risk pregnancies are offered prenatal diagnosis through amniocentesis for cytogenetic analysis of fetal cells. The aim of this study was to evaluate the effectiveness of the rapid fluorescence in situ hybridization (FISH) technique for detecting numerical aberrations of chromosomes 13, 21, 18, X and Y in high-risk pregnancies in an Indian scenario.


Genomic Copy-Number Loss Is Rescued by Self-Limiting Production of DNA Circles.

  • Andrés Mansisidor‎ et al.
  • Molecular cell‎
  • 2018‎

Copy-number changes generate phenotypic variability in health and disease. Whether organisms protect against copy-number changes is largely unknown. Here, we show that Saccharomyces cerevisiae monitors the copy number of its ribosomal DNA (rDNA) and rapidly responds to copy-number loss with the clonal amplification of extrachromosomal rDNA circles (ERCs) from chromosomal repeats. ERC formation is replicative, separable from repeat loss, and reaches a dynamic steady state that responds to the addition of exogenous rDNA copies. ERC levels are also modulated by RNAPI activity and diet, suggesting that rDNA copy number is calibrated against the cellular demand for rRNA. Last, we show that ERCs reinsert into the genome in a dosage-dependent manner, indicating that they provide a reservoir for ultimately increasing rDNA array length. Our results reveal a DNA-based mechanism for rapidly restoring copy number in response to catastrophic gene loss that shares fundamental features with unscheduled copy-number amplifications in cancer cells.


Surface Analysis of Coal Indicating Neutral Red Enhances the Precursor Steps of Methanogenesis.

  • Priyanka Srivastava‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Artificially stimulated, high-yield microbial production of methane from coal is a challenging problem that continues to generate research interest. Decomposition of organic matter and production of methane from coal are the results of multiple redox reactions carried out by different communities of bacteria and archaea. Recent work by our group (Beckmann et al., 2015) demonstrated that the presence of the redox-mediating molecule neutral red, in its crystalline form on a coal surface, can increase methane production. However, hydrolysis and the acetogenesis of the coal surface are essential precursor steps for methane production by archaea. Acetogenesis is the preparation phase of methanogenesis because methanogens can only assimilate acetate, CO2 and H2 among the products formed during this process. In the present study, the surface chemical analysis of neutral red treated coal using attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) demonstrate that the acetate production and resulting oxidation of the coal only occurred at few nanometers into the coal surface (at the nanoscale <5 nm). We observed that in the presence of neutral red and groundwater microbes, acetate signals in coal surface chemistry increased. This is the first evidence suggesting that neutral red enhances the biological conversion of coal into acetate. Microscopy demonstrated that neutral red crystals were co-localize with cells at the surface of coal in groundwater. This is consistent with neutral red crystals serving as a redox hub, concentrating and distributing reducing equivalents amongst the microbial community. In this study, the chemical changes of neutral red treated coal indicated that neutral red doubles the concentration of acetate over the control (coal without neutral red), emphasizing the importance of maximizing the fracture surface coverage of this redox mediator. Overall, results suggested that, neutral red not only can benefit acetoclastic methanogens, but also the fermentative and acetogenic bacteria involved in generating acetate.


The Slowdown of Growth Rate Controls the Single-Cell Distribution of Biofilm Matrix Production via an SinI-SinR-SlrR Network.

  • Zhuo Chen‎ et al.
  • mSystems‎
  • 2023‎

In Bacillus subtilis, master regulator Spo0A controls several cell-differentiation pathways. Under moderate starvation, phosphorylated Spo0A (Spo0A~P) induces biofilm formation by indirectly activating genes controlling matrix production in a subpopulation of cells via an SinI-SinR-SlrR network. Under severe starvation, Spo0A~P induces sporulation by directly and indirectly regulating sporulation gene expression. However, what determines the heterogeneity of individual cell fates is not fully understood. In particular, it is still unclear why, despite being controlled by a single master regulator, biofilm matrix production and sporulation seem mutually exclusive on a single-cell level. In this work, with mathematical modeling, we showed that the fluctuations in the growth rate and the intrinsic noise amplified by the bistability in the SinI-SinR-SlrR network could explain the single-cell distribution of matrix production. Moreover, we predicted an incoherent feed-forward loop; the decrease in the cellular growth rate first activates matrix production by increasing in Spo0A phosphorylation level but then represses it via changing the relative concentrations of SinR and SlrR. Experimental data provide evidence to support model predictions. In particular, we demonstrate how the degree to which matrix production and sporulation appear mutually exclusive is affected by genetic perturbations. IMPORTANCE The mechanisms of cell-fate decisions are fundamental to our understanding of multicellular organisms and bacterial communities. However, even for the best-studied model systems we still lack a complete picture of how phenotypic heterogeneity of genetically identical cells is controlled. Here, using B. subtilis as a model system, we employ a combination of mathematical modeling and experiments to explain the population-level dynamics and single-cell level heterogeneity of matrix gene expression. The results demonstrate how the two cell fates, biofilm matrix production and sporulation, can appear mutually exclusive without explicitly inhibiting one another. Such a mechanism could be used in a wide range of other biological systems.


Association of IL-12, IL-18 variants and serum IL-18 with bladder cancer susceptibility in North Indian population.

  • Praveen Kumar Jaiswal‎ et al.
  • Gene‎
  • 2013‎

IL-12 and IL-18 are immunomodulatory cytokines that play important roles in host immune response against cancers. Variation in DNA sequence in gene promoter may lead to altered IL-18 production and/or activity, and hence can modulate an individual's susceptibility to BC. To test this hypothesis, we investigated the relationship of IL-18 gene promoter -137 G/C and -607C/A polymorphisms and IL12 (-16974) A/C with the risk of BC in North Indian population. Polymorphisms in IL-18 and IL-12 genes were analyzed in 200 BC patients and 200 age, ethnicity and sex-matched controls, using restriction fragment length polymorphism-polymerase chain reaction (PCR-RFLP) and amplification refractory mutation specific-polymerase chain reaction (ARMS) method. The concentrations of IL-18 in serum were determined by ELISA. Significant association was observed with IL18 (-137) G/C heterozygous genotype (GC) with 1.96 folds risk of BC as well at C allele carrier and variant C allele having 2 fold and 1.6 fold risk for BC respectively. IL18 (-607) C/A, heterozygous CA genotype also showed a high risk (OR=1.59) for BC. While IL12 (-16974) A/C heterozygote genotype and C allele carrier demonstrated reduced risk of BC. Hetero genotype of IL18 (-137) G/C was associated with risk of recurrence (HR=2.35) in superficial BC patients receiving BCG treatment thus showing least survival. The distributions of IL-18 gene haplotypes were not significantly different between patients and controls. Serum IL-18 levels were significantly higher in BC patients than in the healthy subjects (p=0.025). Serum IL-18 levels was also significantly associated with IL18 (-137) G/C in heterozygous genotype (GC) (p=0.048). Our results suggest that IL-18 gene polymorphism contributes to bladder cancer risk whereas IL-12 is protective. A relation between IL18 (-137) G/C in heterozygous genotype with elevated IL-18 serum level and bladder cancer risk has been registered in the present study.


Model for surface-dependent factor XII activation: the roles of factor XII heavy chain domains.

  • Aleksandr Shamanaev‎ et al.
  • Blood advances‎
  • 2022‎

Factor XII (FXII) is the zymogen of a plasma protease (FXIIa) that contributes to bradykinin generation by converting prekallikrein to the protease plasma kallikrein (PKa). FXII conversion to FXIIa by autocatalysis or PKa-mediated cleavage is enhanced when the protein binds to negatively charged surfaces such as polymeric orthophosphate. FXII is composed of noncatalytic (heavy chain) and catalytic (light chain) regions. The heavy chain promotes FXII surface-binding and surface-dependent activation but restricts activation when FXII is not surface bound. From the N terminus, the heavy chain contains fibronectin type 2 (FN2), epidermal growth factor-1 (EGF1), fibronectin type 1 (FN1), EGF2, and kringle (KNG) domains and a proline-rich region. It shares this organization with its homolog, pro-hepatocyte growth factor activator (Pro-HGFA). To study the importance of heavy chain domains in FXII function, we prepared FXII with replacements of each domain with corresponding Pro-HGFA domains and tested them in activation and activity assays. EGF1 is required for surface-dependent FXII autoactivation and surface-dependent prekallikrein activation by FXIIa. KNG and FN2 are important for limiting FXII activation in the absence of a surface by a process that may require interactions between a lysine/arginine binding site on KNG and basic residues elsewhere on FXII. This interaction is disrupted by the lysine analog ε-aminocaproic acid. A model is proposed in which an ε-aminocaproic acid-sensitive interaction between the KNG and FN2 domains maintains FXII in a conformation that restricts activation. Upon binding to a surface through EGF1, the KNG/FN2-dependent mechanism is inactivated, exposing the FXII activation cleavage site.


Separable, Ctf4-mediated recruitment of DNA Polymerase α for initiation of DNA synthesis at replication origins and lagging-strand priming during replication elongation.

  • Sarina Y Porcella‎ et al.
  • PLoS genetics‎
  • 2020‎

During eukaryotic DNA replication, DNA polymerase alpha/primase (Pol α) initiates synthesis on both the leading and lagging strands. It is unknown whether leading- and lagging-strand priming are mechanistically identical, and whether Pol α associates processively or distributively with the replisome. Here, we titrate cellular levels of Pol α in S. cerevisiae and analyze Okazaki fragments to study both replication initiation and ongoing lagging-strand synthesis in vivo. We observe that both Okazaki fragment initiation and the productive firing of replication origins are sensitive to Pol α abundance, and that both processes are disrupted at similar Pol α concentrations. When the replisome adaptor protein Ctf4 is absent or cannot interact with Pol α, lagging-strand initiation is impaired at Pol α concentrations that still support normal origin firing. Additionally, we observe that activation of the checkpoint becomes essential for viability upon severe depletion of Pol α. Using strains in which the Pol α-Ctf4 interaction is disrupted, we demonstrate that this checkpoint requirement is not solely caused by reduced lagging-strand priming. Our results suggest that Pol α recruitment for replication initiation and ongoing lagging-strand priming are distinctly sensitive to the presence of Ctf4. We propose that the global changes we observe in Okazaki fragment length and origin firing efficiency are consistent with distributive association of Pol α at the replication fork, at least when Pol α is limiting.


Low-Dose Abiraterone in Metastatic Prostate Cancer: Is It Practice Changing? Facts and Facets.

  • Amol Patel‎ et al.
  • JCO global oncology‎
  • 2020‎

It is projected that approximately 50,000 new cases of prostate cancer will be diagnosed in 2020 in India. Survival has improved because of the development of effective drugs such as abiraterone acetate, but universal accessibility to treatment is not always possible because of cost constraints in lower- and middle-income countries. Recently, the National Comprehensive Cancer Network (NCCN) has included low-dose abiraterone (250 mg/day) with food as an alternative treatment option to full-dose abiraterone (1,000 mg/day) fasting.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: