Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Gene-Specific Intron Retention Serves as Molecular Signature that Distinguishes Melanoma from Non-Melanoma Cancer Cells in Greek Patients.

  • Aikaterini F Giannopoulou‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Skin cancer represents the most common human malignancy, and it includes BCC, SCC, and melanoma. Since melanoma is one of the most aggressive types of cancer, we have herein attempted to develop a gene-specific intron retention signature that can distinguish BCC and SCC from melanoma biopsy tumors.


Organismal and Cellular Stress Responses upon Disruption of Mitochondrial Lonp1 Protease.

  • Eirini Taouktsi‎ et al.
  • Cells‎
  • 2022‎

Cells engage complex surveillance mechanisms to maintain mitochondrial function and protein homeostasis. LonP1 protease is a key component of mitochondrial quality control and has been implicated in human malignancies and other pathological disorders. Here, we employed two experimental systems, the worm Caenorhabditis elegans and human cancer cells, to investigate and compare the effects of LONP-1/LonP1 deficiency at the molecular, cellular, and organismal levels. Deletion of the lonp-1 gene in worms disturbed mitochondrial function, provoked reactive oxygen species accumulation, and impaired normal processes, such as growth, behavior, and lifespan. The viability of lonp-1 mutants was dependent on the activity of the ATFS-1 transcription factor, and loss of LONP-1 evoked retrograde signaling that involved both the mitochondrial and cytoplasmic unfolded protein response (UPRmt and UPRcyt) pathways and ensuing diverse organismal stress responses. Exposure of worms to triterpenoid CDDO-Me, an inhibitor of human LonP1, stimulated only UPRcyt responses. In cancer cells, CDDO-Me induced key components of the integrated stress response (ISR), the UPRmt and UPRcyt pathways, and the redox machinery. However, genetic knockdown of LonP1 revealed a genotype-specific cellular response and induced apoptosis similar to CDDO-Me treatment. Overall, the mitochondrial dysfunction ensued by disruption of LonP1 elicits adaptive cytoprotective mechanisms that can inhibit cancer cell survival but diversely modulate organismal stress response and aging.


Neuronal function of the mRNA decapping complex determines survival of Caenorhabditis elegans at high temperature through temporal regulation of heterochronic gene expression.

  • Fivos Borbolis‎ et al.
  • Open biology‎
  • 2017‎

In response to adverse environmental cues, Caenorhabditis elegans larvae can temporarily arrest development at the second moult and form dauers, a diapause stage that allows for long-term survival. This process is largely regulated by certain evolutionarily conserved signal transduction pathways, but it is also affected by miRNA-mediated post-transcriptional control of gene expression. The 5'-3' mRNA decay mechanism contributes to miRNA-mediated silencing of target mRNAs in many organisms but how it affects developmental decisions during normal or stress conditions is largely unknown. Here, we show that loss of the mRNA decapping complex activity acting in the 5'-3' mRNA decay pathway inhibits dauer formation at the stressful high temperature of 27.5°C, and instead promotes early developmental arrest. Our genetic data suggest that this arrest phenotype correlates with dysregulation of heterochronic gene expression and an aberrant stabilization of lin-14 mRNA at early larval stages. Restoration of neuronal dcap-1 activity was sufficient to rescue growth phenotypes of dcap-1 mutants at both high and normal temperatures, implying the involvement of common developmental timing mechanisms. Our work unveils the crucial role of 5'-3' mRNA degradation in proper regulation of heterochronic gene expression programmes, which proved to be essential for survival under stressful conditions.


From Proteomic Mapping to Invasion-Metastasis-Cascade Systemic Biomarkering and Targeted Drugging of Mutant BRAF-Dependent Human Cutaneous Melanomagenesis.

  • Aikaterini F Giannopoulou‎ et al.
  • Cancers‎
  • 2021‎

Melanoma is classified among the most notoriously aggressive human cancers. Despite the recent progress, due to its propensity for metastasis and resistance to therapy, novel biomarkers and oncogenic molecular drivers need to be promptly identified for metastatic melanoma. Hence, by employing nano liquid chromatography-tandem mass spectrometry deep proteomics technology, advanced bioinformatics algorithms, immunofluorescence, western blotting, wound healing protocols, molecular modeling programs, and MTT assays, we comparatively examined the respective proteomic contents of WM115 primary (n = 3955 proteins) and WM266-4 metastatic (n = 6681 proteins) melanoma cells. It proved that WM115 and WM266-4 cells have engaged hybrid epithelial-to-mesenchymal transition/mesenchymal-to-epithelial transition states, with TGF-β controlling their motility in vitro. They are characterized by different signatures of SOX-dependent neural crest-like stemness and distinct architectures of the cytoskeleton network. Multiple signaling pathways have already been activated from the primary melanoma stage, whereas HIF1α, the major hypoxia-inducible factor, can be exclusively observed in metastatic melanoma cells. Invasion-metastasis cascade-specific sub-routines of activated Caspase-3-triggered apoptosis and LC3B-II-dependent constitutive autophagy were also unveiled. Importantly, WM115 and WM266-4 cells exhibited diverse drug response profiles, with epirubicin holding considerable promise as a beneficial drug for metastatic melanoma clinical management. It is the proteome navigation that enables systemic biomarkering and targeted drugging to open new therapeutic windows for advanced disease.


Diverse functions of mRNA metabolism factors in stress defense and aging of Caenorhabditis elegans.

  • Aris Rousakis‎ et al.
  • PloS one‎
  • 2014‎

Processing bodies (PBs) and stress granules (SGs) are related, cytoplasmic RNA-protein complexes that contribute to post-transcriptional gene regulation in all eukaryotic cells. Both structures contain translationally repressed mRNAs and several proteins involved in silencing, stabilization or degradation of mRNAs, especially under environmental stress. Here, we monitored the dynamic formation of PBs and SGs, in somatic cells of adult worms, using fluorescently tagged protein markers of each complex. Both complexes were accumulated in response to various stress conditions, but distinct modes of SG formation were induced, depending on the insult. We also observed an age-dependent accumulation of PBs but not of SGs. We further showed that direct alterations in PB-related genes can influence aging and normal stress responses, beyond their developmental role. In addition, disruption of SG-related genes had diverse effects on development, fertility, lifespan and stress resistance of worms. Our work therefore underlines the important roles of mRNA metabolism factors in several vital cellular processes and provides insight into their diverse functions in a multicellular organism.


Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans.

  • Marta Artal-Sanz‎ et al.
  • The Journal of cell biology‎
  • 2006‎

Necrotic cell death is defined by distinctive morphological characteristics that are displayed by dying cells (Walker, N.I., B.V. Harmon, G.C. Gobe, and J.F. Kerr. 1988. Methods Achiev. Exp. Pathol. 13:18-54). The cellular events that transpire during necrosis to generate these necrotic traits are poorly understood. Recent studies in the nematode Caenorhabditis elegans show that cytoplasmic acidification develops during necrosis and is required for cell death (Syntichaki, P., C. Samara, and N. Tavernarakis. 2005. Curr. Biol. 15:1249-1254). However, the origin of cytoplasmic acidification remains elusive. We show that the alkalization of endosomal and lysosomal compartments ameliorates necrotic cell death triggered by diverse stimuli. In addition, mutations in genes that result in altered lysosomal biogenesis and function markedly affect neuronal necrosis. We used a genetically encoded fluorescent marker to follow lysosome fate during neurodegeneration in vivo. Strikingly, we found that lysosomes fuse and localize exclusively around a swollen nucleus. In the advanced stages of cell death, the nucleus condenses and migrates toward the periphery of the cell, whereas green fluorescent protein-labeled lysosomal membranes fade, indicating lysosomal rupture. Our findings demonstrate a prominent role for lysosomes in cellular destruction during necrotic cell death, which is likely conserved in metazoans.


The general control nonderepressible-2 kinase mediates stress response and longevity induced by target of rapamycin inactivation in Caenorhabditis elegans.

  • Aris Rousakis‎ et al.
  • Aging cell‎
  • 2013‎

The general control nonderepressible 2 (GCN2) kinase is a nutrient-sensing pathway that responds to amino acids deficiency and induces a genetic program to effectively maintain cellular homeostasis. Here we established the conserved role of Caenorhabditis elegans GCN-2 under amino acid limitation as a translation initiation factor 2 (eIF2) kinase. Using a combination of genetic and molecular approaches, we showed that GCN-2 kinase activity plays a central role in survival under nutrient stress and mediates lifespan extension conferred by dietary restriction (DR) or inhibition of the major nutrient-sensing pathway, the target of rapamycin (TOR). We also demonstrated that the GCN-2 and TOR signaling pathways converge on the PHA-4/FoxA transcription factor and its downstream target genes to ensure survival of the whole organism under a multitude of stress conditions, such as nutrient scarcity or environmental stresses. This is one step forward in the understanding of evolutionary conserved mechanisms that confer longevity and healthspan.


mRNA decapping is an evolutionarily conserved modulator of neuroendocrine signaling that controls development and ageing.

  • Fivos Borbolis‎ et al.
  • eLife‎
  • 2020‎

Eukaryotic 5'-3' mRNA decay plays important roles during development and in response to stress, regulating gene expression post-transcriptionally. In Caenorhabditis elegans, deficiency of DCAP-1/DCP1, the essential co-factor of the major cytoplasmic mRNA decapping enzyme, impacts normal development, stress survival and ageing. Here, we show that overexpression of dcap-1 in neurons of worms is sufficient to increase lifespan through the function of the insulin/IGF-like signaling and its effector DAF-16/FOXO transcription factor. Neuronal DCAP-1 affects basal levels of INS-7, an ageing-related insulin-like peptide, which acts in the intestine to determine lifespan. Short-lived dcap-1 mutants exhibit a neurosecretion-dependent upregulation of intestinal ins-7 transcription, and diminished nuclear localization of DAF-16/FOXO. Moreover, neuronal overexpression of DCP1 in Drosophila melanogaster confers longevity in adults, while neuronal DCP1 deficiency shortens lifespan and affects wing morphogenesis, cell non-autonomously. Our genetic analysis in two model-organisms suggests a critical and conserved function of DCAP-1/DCP1 in developmental events and lifespan modulation.


The vacuolar H+ -ATPase mediates intracellular acidification required for neurodegeneration in C. elegans.

  • Popi Syntichaki‎ et al.
  • Current biology : CB‎
  • 2005‎

Numerous studies implicate necrotic cell death in devastating human pathologies such as stroke and neurodegenerative diseases. Investigations in both nematodes and mammals converge to implicate specific calpain and aspartyl proteases in the execution of necrotic cell death. It is believed that these proteases become activated under conditions that inflict necrotic cell death. However, the factors that modulate necrosis and govern the erroneous activation of these otherwise benign enzymes are largely unknown. Here we show that the function of the vacuolar H(+)-ATPase, a pump that acidifies lysosomes and other intracellular organelles, is essential for necrotic cell death in C. elegans. Cytoplasmic pH drops in dying cells. Intracellular acidification requires the vacuolar H(+)-ATPase, whereas alkalization of endosomal and lysosomal compartments by weak bases protects against necrosis. In addition, we show that vacuolar H(+)-ATPase activity is required downstream of cytoplasmic calcium overload during necrosis. Thus, intracellular pH is an important modulator of necrosis in C. elegans. We propose that vacuolar H(+)-ATPase activity is required to establish necrosis-promoting, acidic intracellular conditions that augment the function of executioner aspartyl proteases in dying cells. Similar mechanisms may contribute to necrotic cell death that follows extreme acidosis-for example, during stroke-in humans.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: