Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

A comprehensive expression profile of microRNAs and other classes of non-coding small RNAs in barley under phosphorous-deficient and -sufficient conditions.

  • Michael Hackenberg‎ et al.
  • DNA research : an international journal for rapid publication of reports on genes and genomes‎
  • 2013‎

Phosphorus (P) is essential for plant growth. MicroRNAs (miRNAs) play a key role in phosphate homeostasis. However, little is known about P effect on miRNA expression in barley (Hordeum vulgare L.). In this study, we used Illumina's next-generation sequencing technology to sequence small RNAs (sRNAs) in barley grown under P-deficient and P-sufficient conditions. We identified 221 conserved miRNAs and 12 novel miRNAs, of which 55 were only present in P-deficient treatment while 32 only existed in P-sufficient treatment. Total 47 miRNAs were significantly differentially expressed between the two P treatments (|log2| > 1). We also identified many other classes of sRNAs, including sense and antisense sRNAs, repeat-associated sRNAs, transfer RNA (tRNA)-derived sRNAs and chloroplast-derived sRNAs, and some of which were also significantly differentially expressed between the two P treatments. Of all the sRNAs identified, antisense sRNAs were the most abundant sRNA class in both P treatments. Surprisingly, about one-fourth of sRNAs were derived from the chloroplast genome, and a chloroplast-encoded tRNA-derived sRNA was the most abundant sRNA of all the sRNAs sequenced. Our data provide valuable clues for understanding the properties of sRNAs and new insights into the potential roles of miRNAs and other classes of sRNAs in the control of phosphate homeostasis.


FastAnnotator--an efficient transcript annotation web tool.

  • Ting-Wen Chen‎ et al.
  • BMC genomics‎
  • 2012‎

Recent developments in high-throughput sequencing (HTS) technologies have made it feasible to sequence the complete transcriptomes of non-model organisms or metatranscriptomes from environmental samples. The challenge after generating hundreds of millions of sequences is to annotate these transcripts and classify the transcripts based on their putative functions. Because many biological scientists lack the knowledge to install Linux-based software packages or maintain databases used for transcript annotation, we developed an automatic annotation tool with an easy-to-use interface.


Genetic Indicators of Drug Resistance in the Highly Repetitive Genome of Trichomonas vaginalis.

  • Martina Bradic‎ et al.
  • Genome biology and evolution‎
  • 2017‎

Trichomonas vaginalis, the most common nonviral sexually transmitted parasite, causes ∼283 million trichomoniasis infections annually and is associated with pregnancy complications and increased risk of HIV-1 acquisition. The antimicrobial drug metronidazole is used for treatment, but in a fraction of clinical cases, the parasites can become resistant to this drug. We undertook sequencing of multiple clinical isolates and lab derived lines to identify genetic markers and mechanisms of metronidazole resistance. Reduced representation genome sequencing of ∼100 T. vaginalis clinical isolates identified 3,923 SNP markers and presence of a bipartite population structure. Linkage disequilibrium was found to decay rapidly, suggesting genome-wide recombination and the feasibility of genetic association studies in the parasite. We identified 72 SNPs associated with metronidazole resistance, and a comparison of SNPs within several lab-derived resistant lines revealed an overlap with the clinically resistant isolates. We identified SNPs in genes for which no function has yet been assigned, as well as in functionally-characterized genes relevant to drug resistance (e.g., pyruvate:ferredoxin oxidoreductase). Transcription profiles of resistant strains showed common changes in genes involved in drug activation (e.g., flavin reductase), accumulation (e.g., multidrug resistance pump), and detoxification (e.g., nitroreductase). Finally, we identified convergent genetic changes in lab-derived resistant lines of Tritrichomonas foetus, a distantly related species that causes venereal disease in cattle. Shared genetic changes within and between T. vaginalis and Tr. foetus parasites suggest conservation of the pathways through which adaptation has occurred. These findings extend our knowledge of drug resistance in the parasite, providing a panel of markers that can be used as a diagnostic tool.


VAReporter: variant reporter for cancer research of massive parallel sequencing.

  • Po-Jung Huang‎ et al.
  • BMC genomics‎
  • 2018‎

High throughput sequencing technologies have been an increasingly critical aspect of precision medicine owing to a better identification of disease targets, which contributes to improved health care cost and clinical outcomes. In particular, disease-oriented targeted enrichment sequencing is becoming a widely-accepted application for diagnostic purposes, which can interrogate known diagnostic variants as well as identify novel biomarkers from panels of entire human coding exome or disease-associated genes.


CoMutPlotter: a web tool for visual summary of mutations in cancer cohorts.

  • Po-Jung Huang‎ et al.
  • BMC medical genomics‎
  • 2019‎

CoMut plot is widely used in cancer research publications as a visual summary of mutational landscapes in cancer cohorts. This summary plot can inspect gene mutation rate and sample mutation burden with their relevant clinical details, which is a common first step for analyzing the recurrence and co-occurrence of gene mutations across samples. The cBioPortal and iCoMut are two web-based tools that allow users to create intricate visualizations from pre-loaded TCGA and ICGC data. For custom data analysis, only limited command-line packages are available now, making the production of CoMut plots difficult to achieve, especially for researchers without advanced bioinformatics skills. To address the needs for custom data and TCGA/ICGC data comparison, we have created CoMutPlotter, a web-based tool for the production of publication-quality graphs in an easy-of-use and automatic manner.


FunctionAnnotator, a versatile and efficient web tool for non-model organism annotation.

  • Ting-Wen Chen‎ et al.
  • Scientific reports‎
  • 2017‎

Along with the constant improvement in high-throughput sequencing technology, an increasing number of transcriptome sequencing projects are carried out in organisms without decoded genome information and even on environmental biological samples. To study the biological functions of novel transcripts, the very first task is to identify their potential functions. We present a web-based annotation tool, FunctionAnnotator, which offers comprehensive annotations, including GO term assignment, enzyme annotation, domain/motif identification and predictions for subcellular localization. To accelerate the annotation process, we have optimized the computation processes and used parallel computing for all annotation steps. Moreover, FunctionAnnotator is designed to be versatile, and it generates a variety of useful outputs for facilitating other analyses. Here, we demonstrate how FunctionAnnotator can be helpful in annotating non-model organisms. We further illustrate that FunctionAnnotator can estimate the taxonomic composition of environmental samples and assist in the identification of novel proteins by combining RNA-Seq data with proteomics technology. In summary, FunctionAnnotator can efficiently annotate transcriptomes and greatly benefits studies focusing on non-model organisms or metatranscriptomes. FunctionAnnotator, a comprehensive annotation web-service tool, is freely available online at: http://fa.cgu.edu.tw/ . This new web-based annotator will shed light on field studies involving organisms without a reference genome.


Association of AXIN1 With Parkinson's Disease in a Taiwanese Population.

  • Hwa-Shin Fang‎ et al.
  • Journal of movement disorders‎
  • 2022‎

A meta-analysis of locus-based genome-wide association studies recently identified a relationship between AXIN1 and Parkinson's disease (PD). Few studies of Asian populations, however, have reported such a genetic association. The influences of rs13337493, rs758033, and rs2361988, three PD-associated genetic variants of AXIN1, were investigated in the present study because AXIN1 is related to Wnt/β-catenin signaling.


HeapMS: An Automatic Peak-Picking Pipeline for Targeted Proteomic Data Powered by 2D Heatmap Transformation and Convolutional Neural Networks.

  • Chi-Ching Lee‎ et al.
  • Analytical chemistry‎
  • 2023‎

The process of peak picking and quality assessment for multiple reaction monitoring (MRM) data demands significant human effort, especially for signals with low abundance and high interference. Although multiple peak-picking software packages are available, they often fail to detect peaks with low quality and do not report cases with low confidence. Furthermore, visual examination of all chromatograms is still necessary to identify uncertain or erroneous cases. This study introduces HeapMS, a web service that uses artificial intelligence to assist with peak picking and the quality assessment of MRM chromatograms. HeapMS applies a rule-based filter to remove chromatograms with low interference and high-confidence peak boundaries detected by Skyline. Additionally, it transforms two histograms (representing light and heavy peptides) into a single encoded heatmap and performs a two-step evaluation (quality detection and peak picking) using image convolutional neural networks. HeapMS offers three categories of peak picking: uncertain peak picking that requires manual inspection, deletion peak picking that requires removal or manual re-examination, and automatic peak picking. HeapMS acquires the chromatogram and peak-picking boundaries directly from Skyline output. The output results are imported back into Skyline for further manual inspection, facilitating integration with Skyline. HeapMS offers the benefit of detecting chromatograms that should be deleted or require human inspection. Based on defined categories, it can significantly reduce human workload and provide consistent results. Furthermore, by using heatmaps instead of histograms, HeapMS can adapt to future updates in image recognition models. The HeapMS is available at: https://github.com/ccllabe/HeapMS.


Ultra-deep targeted sequencing of advanced oral squamous cell carcinoma identifies a mutation-based prognostic gene signature.

  • Shu-Jen Chen‎ et al.
  • Oncotarget‎
  • 2015‎

Patients with advanced oral squamous cell carcinoma (OSCC) have heterogeneous outcomes that limit the implementation of tailored treatment options. Genetic markers for improved prognostic stratification are eagerly awaited.


Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome.

  • Lenka Horváthová‎ et al.
  • Genome biology and evolution‎
  • 2012‎

Gene duplication is an important evolutionary mechanism and no eukaryote has more duplicated gene families than the parasitic protist Trichomonas vaginalis. Iron is an essential nutrient for Trichomonas and plays a pivotal role in the establishment of infection, proliferation, and virulence. To gain insight into the role of iron in T. vaginalis gene expression and genome evolution, we screened iron-regulated genes using an oligonucleotide microarray for T. vaginalis and by comparative EST (expressed sequence tag) sequencing of cDNA libraries derived from trichomonads cultivated under iron-rich (+Fe) and iron-restricted (-Fe) conditions. Among 19,000 ESTs from both libraries, we identified 336 iron-regulated genes, of which 165 were upregulated under +Fe conditions and 171 under -Fe conditions. The microarray analysis revealed that 195 of 4,950 unique genes were differentially expressed. Of these, 117 genes were upregulated under +Fe conditions and 78 were upregulated under -Fe conditions. The results of both methods were congruent concerning the regulatory trends and the representation of gene categories. Under +Fe conditions, the expression of proteins involved in carbohydrate metabolism, particularly in the energy metabolism of hydrogenosomes, and in methionine catabolism was increased. The iron-sulfur cluster assembly machinery and certain cysteine proteases are of particular importance among the proteins upregulated under -Fe conditions. A unique feature of the T. vaginalis genome is the retention during evolution of multiple paralogous copies for a majority of all genes. Although the origins and reasons for this gene expansion remain unclear, the retention of multiple gene copies could provide an opportunity to evolve differential expression during growth in variable environmental conditions. For genes whose expression was affected by iron, we found that iron influenced the expression of only some of the paralogous copies, whereas the expression of the other paralogs was iron independent. This finding indicates a very stringent regulation of the differentially expressed paralogous genes in response to changes in the availability of exogenous nutrients and provides insight into the evolutionary rationale underlying massive paralog retention in the Trichomonas genome.


Reusable Functionalized Hydrogel Sorbents for Removing Long- and Short-Chain Perfluoroalkyl Acids (PFAAs) and GenX from Aqueous Solution.

  • Po-Jung Huang‎ et al.
  • ACS omega‎
  • 2018‎

Per- and poly-fluoroalkyl substances (PFASs) are man-made chemicals that are toxic and widely detected in the environment, including drinking water sources. A cost-effective treatment process for PFASs is currently not available. We developed reusable hydrogel sorbents to remove long- and short-chain perfluoroalkyl acids and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX), which is are emerging PFAS. Through fluoridation and amination of poly(ethylene glycol) diacrylate (PEGDA), the newly synthesized sorbents can sorb the five targeted PFASs (perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorobutanesulfonic acid (PFBS), and perfluorobutanoic acid (PFBA) and GenX) to different degrees from aqueous solution. Aminated PEGDA showed the highest sorption capacity for all five PFASs, particularly for PFBA and PFBS. The bifunctionalized PEGDA showed higher capacities for PFOA and PFOS, suggesting that both hydrophobic interactions and charges contribute to the sorption. Both aminated and bifunctionalized sorbents can remove GenX from water, with the highest sorption capacity of 98.7 μmol g aminated PEGDA-1 within 6 h. The absorbed PFASs on the sorbents were observed and characterized by Fourier-transform infrared spectroscopy. The spent sorbents were reusable after readily regenerated with 70% methanol contained 1% NaCl.


Green Synthesis of Reusable Adsorbents for the Removal of Heavy Metal Ions.

  • Thakshila Nadeeshani Dharmapriya‎ et al.
  • ACS omega‎
  • 2021‎

Industrial wastewater often contains heavy metals, like lead, copper, nickel, cadmium, zinc, mercury, arsenic, and chromium. Overdoses of heavy metals will impose a severe threat to human health. Adsorption is the most efficient way of wastewater treatment for eliminating heavy metals. A novel material-reusable hydrogel-based adsorbent was developed in overcoming the regeneration issue. The polyethylene glycol diacrylate-3-sulfopropyl methacrylate potassium salt (PEGDA-SMP) hydrogel performed an ion-exchange rate to remove heavy metals from wastewater in 30-120 min. The adsorption capacity of PEGDA-SMP increases the increasing pH of a solution, in which pH 5 reaches the maximum. Pseudo-second-order adsorption and the Langmuir adsorption model can fully describe the adsorption properties of PEGDA-SMP for heavy metals. PEGDA-SMP prefers to exchange Pb2+ through K+, and its adsorption capacity can achieve 263.158 mg/g. Ag+, Zn2+, Ni2+, and Cu2+ were 227.27, 117.647, 102.041, and 99.010 mg/g, respectively. The hydrated ionic radius of the heavy metal might play an essential role to affect the adsorption preference. The removal efficiency of heavy metals can approach over 95% for each heavy metal. PEGDA-SMP performs rapid desorption and reaches desorption equilibrium in 15 min. After 10 consecutive adsorption-desorption cycles, the adsorption capacity remained over 90%. The hydrogel developed in this study showed reversible heavy metal absorption. Therefore, excellent adsorption-desorption properties of PEGDA-SMP can be potentially extended to industrial wastewater for removing heavy metals.


Comprehensive functional genomic analyses link APC somatic mutation and mRNA-miRNA networks to the clinical outcome of stage-III colorectal cancer patients.

  • Sum-Fu Chiang‎ et al.
  • Biomedical journal‎
  • 2022‎

Colorectal cancer (CRC) is a major health concern globally, but exhibits regional and/or environmental distinctions in terms of outcome especially for patients with stage III CRC.


Valorization of Glucose-Derived Humin as a Low-Cost, Green, Reusable Adsorbent for Dye Removal, and Modeling the Process.

  • Thakshila Nadeeshani Dharmapriya‎ et al.
  • Polymers‎
  • 2023‎

Glucose can be isomerized into fructose and dehydrated into key platform biochemicals, following the "bio-refinery concept". However, this process generates black and intractable substances called humin, which possess a polymeric furanic-type structure. In this study, glucose-derived humin (GDH) was obtained by reacting D-glucose with an allylamine catalyst in a deep eutectic solvent medium, followed by a carbonization step. GDH was used as a low-cost, green, and reusable adsorbent for removing cationic methylene blue (MB) dye from water. The morphology of carbonized GDH differs from pristine GDH. The removal efficiencies of MB dye using pristine GDH and carbonized GDH were 52% and 97%, respectively. Temperature measurements indicated an exothermic process following pseudo-first-order kinetics, with adsorption behavior described by the Langmuir isotherm. The optimum parameters were predicted using the response surface methodology and found to be a reaction time of 600 min, an initial dye concentration of 50 ppm, and a GDH weight of 0.11 g with 98.7% desirability. The MB dye removal rate optimized through this model was 96.85%, which was in good agreement with the experimentally obtained value (92.49%). After 10 cycles, the MB removal rate remained above 80%, showcasing the potential for GDH reuse and cost-effective wastewater treatment.


Dissecting the Transcriptomes of Multiple Metronidazole-Resistant and Sensitive Trichomonas vaginalis Strains Identified Distinct Genes and Pathways Associated with Drug Resistance and Cell Death.

  • Po-Jung Huang‎ et al.
  • Biomedicines‎
  • 2021‎

Trichomonas vaginalis is the causative agent of trichomoniasis, the most prevalent non-viral sexually transmitted infection worldwide. Metronidazole (MTZ) is the mainstay of anti-trichomonal chemotherapy; however, drug resistance has become an increasingly worrying issue. Additionally, the molecular events of MTZ-induced cell death in T. vaginalis remain elusive. To gain insight into the differential expression of genes related to MTZ resistance and cell death, we conducted RNA-sequencing of three paired MTZ-resistant (MTZ-R) and MTZ-sensitive (MTZ-S) T. vaginalis strains treated with or without MTZ. Comparative transcriptomes analysis identified that several putative drug-resistant genes were exclusively upregulated in different MTZ-R strains, such as ATP-binding cassette (ABC) transporters and multidrug resistance pumps. Additionally, several shared upregulated genes among all the MTZ-R transcriptomes were not previously identified in T. vaginalis, such as 5'-nucleotidase surE and Na+-driven multidrug efflux pump, which are a potential stress response protein and a multidrug and toxic compound extrusion (MATE)-like protein, respectively. Functional enrichment analysis revealed that purine and pyrimidine metabolisms were suppressed in MTZ-S parasites upon drug treatment, whereas the endoplasmic reticulum-associated degradation (ERAD) pathway, proteasome, and ubiquitin-mediated proteolysis were strikingly activated, highlighting the novel pathways responsible for drug-induced stress. Our work presents the most detailed analysis of the transcriptional changes and the regulatory networks associated with MTZ resistance and MTZ-induced signaling, providing insights into MTZ resistance and cell death mechanisms in trichomonads.


PARRoT- a homology-based strategy to quantify and compare RNA-sequencing from non-model organisms.

  • Ruei-Chi Gan‎ et al.
  • BMC bioinformatics‎
  • 2016‎

Next-generation sequencing promises the de novo genomic and transcriptomic analysis of samples of interests. However, there are only a few organisms having reference genomic sequences and even fewer having well-defined or curated annotations. For transcriptome studies focusing on organisms lacking proper reference genomes, the common strategy is de novo assembly followed by functional annotation. However, things become even more complicated when multiple transcriptomes are compared.


Protein cysteine S-nitrosylation provides reducing power by enhancing lactate dehydrogenase activity in Trichomonas vaginalis under iron deficiency.

  • Wei-Hung Cheng‎ et al.
  • Parasites & vectors‎
  • 2020‎

Iron plays essential roles in the pathogenesis and proliferation of Trichomonas vaginalis, the causative agent of the most prevalent non-viral human sexually transmitted infection. We previously demonstrated that under iron deficiency, the endogenous nitric oxide (NO) is accumulated and capable of regulating the survival of T. vaginalis. Herein, we aim to explore the influence of NO on the activity of the pyruvate-reducing enzyme lactate dehydrogenase in T. vaginalis (TvLDH).


γ-Carboxymuconolactone decarboxylase: a novel cell cycle-related basal body protein in the early branching eukaryote Trichomonas vaginalis.

  • Wei-Hung Cheng‎ et al.
  • Parasites & vectors‎
  • 2017‎

γ-Carboxymuconolactone decarboxylase (CMD) participates in the β-ketoadipate pathway, which catalyzes aromatic compounds to produce acetyl- or succinyl-CoA, in prokaryotes and yeast. Our previous study demonstrated that expression of a CMD homologue that contains two signatures (dualCMD) is negatively regulated by iron in Trichomonas vaginalis. However, we were not able to identify the components of the β-ketoadipate pathway in the parasite's genome. These observations prompted us to investigate the biological functions of this novel CMD homologue in T. vaginalis.


Oral Microbiota Community Dynamics Associated With Oral Squamous Cell Carcinoma Staging.

  • Chia-Yu Yang‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Oral squamous cell carcinoma (OSCC) is a highly aggressive cancer and the fourth leading malignancy among males in Taiwan. Some pathogenic bacteria are associated with periodontitis and oral cancer. However, the comprehensive profile of the oral microbiome during the cancer's progression from the early stage to the late stage is still unclear. We profiled the oral microbiota and identified bacteria biomarkers associated with OSCC. The microbiota of an oral rinse from 51 healthy individuals and 197 OSCC patients at different stages were investigated using 16S rRNA V3V4 amplicon sequencing, followed by bioinformatics and statistical analyses. The oral microbiota communities from stage 4 patients showed significantly higher complexity than those from healthy controls. The populations also dynamically changed with the cancer's progression from stage 1 to stage 4. The predominant phyla in the oral samples showed variation in the relative abundance of Fusobacteria, Bacteroidetes, and Actinobacteria. The abundance of Fusobacteria increased significantly with the progression of oral cancer from the healthy controls (2.98%) to OSCC stage 1 (4.35%) through stage 4 (7.92%). At the genus level, the abundance of Fusobacterium increased, while the number of Streptococcus, Haemophilus, Porphyromonas, and Actinomyces decreased with cancer progression. Fusobacterium periodonticum, Parvimonas micra, Streptococcus constellatus, Haemophilus influenza, and Filifactor alocis were associated with OSCC, and they progressively increased in abundance from stage 1 to stage 4. The abundances of Streptococcus mitis, Haemophilus parainfluenzae, and Porphyromonas pasteri were inversely associated with OSCC progression. We selected a bacterial marker panel of three bacteria (upregulated F. periodonticum, down-regulated S. mitis, and P. pasteri), which had an AUC of 0.956 (95% CI = 0.925-0.986) in discriminating OSCC stage 4 from the healthy controls. Furthermore, the functional prediction of oral bacterial communities showed that genes involved in carbohydrate-related metabolism, such as methane metabolism, and energy-metabolism-related parameters, such as oxidative phosphorylation and carbon fixation in photosynthetic organisms, were enriched in late-stage OSCC, while those responsible for amino acid metabolism, such as folate biosynthesis and valine, leucine, and isoleucine biosynthesis, were significantly associated with the healthy controls. In conclusion, our results provided evidence of oral bacteria community changes during oral cancer progression and suggested the possibility of using bacteria as OSCC diagnostic markers.


circlncRNAnet: an integrated web-based resource for mapping functional networks of long or circular forms of noncoding RNAs.

  • Shao-Min Wu‎ et al.
  • GigaScience‎
  • 2018‎

Despite their lack of protein-coding potential, long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have emerged as key determinants in gene regulation, acting to fine-tune transcriptional and signaling output. These noncoding RNA transcripts are known to affect expression of messenger RNAs (mRNAs) via epigenetic and post-transcriptional regulation. Given their widespread target spectrum, as well as extensive modes of action, a complete understanding of their biological relevance will depend on integrative analyses of systems data at various levels.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: