Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Multiphoton In Vivo Microscopy of Embryonic Thrombopoiesis Reveals the Generation of Platelets through Budding.

  • Huan Liu‎ et al.
  • Cells‎
  • 2023‎

Platelets are generated by specialized cells called megakaryocytes (MKs). However, MK's origin and platelet release mode have remained incompletely understood. Here, we established direct visualization of embryonic thrombopoiesis in vivo by combining multiphoton intravital microscopy (MP-IVM) with a fluorescence switch reporter mouse model under control of the platelet factor 4 promoter (Pf4CreRosa26mTmG). Using this microscopy tool, we discovered that fetal liver MKs provide higher thrombopoietic activity than yolk sac MKs. Mechanistically, fetal platelets were released from MKs either by membrane buds or the formation of proplatelets, with the former constituting the key process. In E14.5 c-Myb-deficient embryos that lack definitive hematopoiesis, MK and platelet numbers were similar to wild-type embryos, indicating the independence of embryonic thrombopoiesis from definitive hematopoiesis at this stage of development. In summary, our novel MP-IVM protocol allows the characterization of thrombopoiesis with high spatio-temporal resolution in the mouse embryo and has identified membrane budding as the main mechanism of fetal platelet production.


Stable Chinese Hamster Ovary Suspension Cell Lines Harboring Recombinant Human Cytochrome P450 Oxidoreductase and Human Cytochrome P450 Monooxygenases as Platform for In Vitro Biotransformation Studies.

  • Christian Schulz‎ et al.
  • Cells‎
  • 2023‎

In the liver, phase-1 biotransformation of drugs and other xenobiotics is largely facilitated by enzyme complexes consisting of cytochrome P450 oxidoreductase (CPR) and cytochrome P450 monooxygenases (CYPs). Generated from human liver-derived cell lines, recombinant in vitro cell systems with overexpression of defined phase-1 enzymes are widely used for pharmacological and toxicological drug assessment and laboratory-scale production of drug-specific reference metabolites. Most, if not all, of these cell lines, however, display some background activity of several CYPs, making it difficult to attribute effects to defined CYPs. The aim of this study was to generate cell lines with stable overexpression of human phase-1 enzymes based on Chinese hamster ovary (CHO) suspension cells. Cells were sequentially modified with cDNAs for human CPR in combination with CYP1A2, CYP2B6, or CYP3A4, using lentiviral gene transfer. In parallel, CYP-overexpressing cell lines without recombinant CPR were generated. Successful recombinant expression was demonstrated by mRNA and protein analyses. Using prototypical CYP-substrates, generated cell lines proved to display specific enzyme activities of each overexpressed CYP while we did not find any endogenous activity of those CYPs in parental CHO cells. Interestingly, cell lines revealed some evidence that the dependence of CYP activity on CPR could vary between CYPs. This needs to be confirmed in further studies. Recombinant expression of CPR was also shown to enhance CYP3A4-independent metabolisation of testosterone to androstenedione in CHO cells. We propose the novel serum-free CHO suspension cell lines with enhanced CPR and/or defined CYP activity as a promising "humanised" in vitro model to study the specific effects of those human CYPs. This could be relevant for toxicology and/or pharmacology studies in the pharmaceutical industry or medicine.


Differences in Cell-Intrinsic Inflammatory Programs of Yolk Sac and Bone Marrow Macrophages.

  • Sara Elhag‎ et al.
  • Cells‎
  • 2021‎

Tissue-resident macrophages have mixed developmental origins. They derive in variable extent from yolk sac (YS) hematopoiesis during embryonic development. Bone marrow (BM) hematopoietic progenitors give rise to tissue macrophages in postnatal life, and their contribution increases upon organ injury. Since the phenotype and functions of macrophages are modulated by the tissue of residence, the impact of their origin and developmental paths has remained incompletely understood.


Anti-Cancer Prodrug Cyclophosphamide Exerts Thrombogenic Effects on Human Venous Endothelial Cells Independent of CYP450 Activation-Relevance to Thrombosis.

  • Anne Krüger-Genge‎ et al.
  • Cells‎
  • 2023‎

Cancer patients are at a very high risk of serious thrombotic events, often fatal. The causes discussed include the detachment of thrombogenic particles from tumor cells or the adverse effects of chemotherapeutic agents. Cytostatic agents can either act directly on their targets or, in the case of a prodrug approach, require metabolization for their action. Cyclophosphamide (CPA) is a widely used cytostatic drug that requires prodrug activation by cytochrome P450 enzymes (CYP) in the liver. We hypothesize that CPA could induce thrombosis in one of the following ways: (1) damage to endothelial cells (EC) after intra-endothelial metabolization; or (2) direct damage to EC without prior metabolization. In order to investigate this hypothesis, endothelial cells (HUVEC) were treated with CPA in clinically relevant concentrations for up to 8 days. HUVECs were chosen as a model representing the first place of action after intravenous CPA administration. No expression of CYP2B6, CYP3A4, CYP2C9 and CYP2C19 was found in HUVEC, but a weak expression of CYP2C18 was observed. CPA treatment of HUVEC induced DNA damage and a reduced formation of an EC monolayer and caused an increased release of prostacyclin (PGI2) and thromboxane (TXA) associated with a shift of the PGI2/TXA balance to a prothrombotic state. In an in vivo scenario, such processes would promote the risk of thrombus formation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: