Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Optogenetically transduced human ES cell-derived neural progenitors and their neuronal progenies: Phenotypic characterization and responses to optical stimulation.

  • Jiwon Ryu‎ et al.
  • PloS one‎
  • 2019‎

Optogenetically engineered human neural progenitors (hNPs) are viewed as promising tools in regenerative neuroscience because they allow the testing of the ability of hNPs to integrate within nervous system of an appropriate host not only structurally, but also functionally based on the responses of their differentiated progenies to light. Here, we transduced H9 embryonic stem cell-derived hNPs with a lentivirus harboring human channelrhodopsin (hChR2) and differentiated them into a forebrain lineage. We extensively characterized the fate and optogenetic functionality of hChR2-hNPs in vitro with electrophysiology and immunocytochemistry. We also explored whether the in vivo phenotype of ChR2-hNPs conforms to in vitro observations by grafting them into the frontal neocortex of rodents and analyzing their survival and neuronal differentiation. Human ChR2-hNPs acquired neuronal phenotypes (TUJ1, MAP2, SMI-312, and synapsin 1 immunoreactivity) in vitro after an average of 70 days of coculturing with CD1 astrocytes and progressively displayed both inhibitory and excitatory neurotransmitter signatures by immunocytochemistry and whole-cell patch clamp recording. Three months after transplantation into motor cortex of naïve or injured mice, 60-70% of hChR2-hNPs at the transplantation site expressed TUJ1 and had neuronal cytologies, whereas 60% of cells also expressed ChR2. Transplant-derived neurons extended axons through major commissural and descending tracts and issued synaptophysin+ terminals in the claustrum, endopiriform area, and corresponding insular and piriform cortices. There was no apparent difference in engraftment, differentiation, or connectivity patterns between injured and sham subjects. Same trends were observed in a second rodent host, i.e. rat, where we employed longer survival times and found that the majority of grafted hChR2-hNPs differentiated into GABAergic neurons that established dense terminal fields and innervated mostly dendritic profiles in host cortical neurons. In physiological experiments, human ChR2+ neurons in culture generated spontaneous action potentials (APs) 100-170 days into differentiation and their firing activity was consistently driven by optical stimulation. Stimulation generated glutamatergic and GABAergic postsynaptic activity in neighboring ChR2- cells, evidence that hChR2-hNP-derived neurons had established functional synaptic connections with other neurons in culture. Light stimulation of hChR2-hNP transplants in vivo generated complicated results, in part because of the variable response of the transplants themselves. Our findings show that we can successfully derive hNPs with optogenetic properties that are fully transferrable to their differentiated neuronal progenies. We also show that these progenies have substantial neurotransmitter plasticity in vitro, whereas in vivo they mostly differentiate into inhibitory GABAergic neurons. Furthermore, neurons derived from hNPs have the capacity of establishing functional synapses with postsynaptic neurons in vitro, but this outcome is technically challenging to explore in vivo. We propose that optogenetically endowed hNPs hold great promise as tools to explore de novo circuit formation in the brain and, in the future, perhaps launch a new generation of neuromodulatory therapies.


Molecular signatures define subtypes of auditory afferents with distinct peripheral projection patterns and physiological properties.

  • Caroline Siebald‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Type I spiral ganglion neurons (SGNs) are the auditory afferents that transmit sound information from cochlear inner hair cells (IHCs) to the brainstem. These afferents consist of physiological subtypes that differ in their spontaneous firing rate (SR), activation threshold, and dynamic range and have been described as low, medium, and high SR fibers. Lately, single-cell RNA sequencing experiments have revealed three molecularly defined type I SGN subtypes. The extent to which physiological type I SGN subtypes correspond to molecularly defined subtypes is unclear. To address this question, we have generated mouse lines expressing CreERT2 in SGN subtypes that allow for a physiological assessment of molecular subtypes. We show that Lypd1-CreERT2 expressing SGNs represent a well-defined group of neurons that preferentially innervate the IHC modiolar side and exhibit a narrow range of low SRs. In contrast, Calb2-CreERT2 expressing SGNs preferentially innervate the IHC pillar side and exhibit a wider range of SRs, thus suggesting that a strict stratification of all SGNs into three molecular subclasses is not obvious, at least not with the CreERT2 tools used here. Genetically marked neuronal subtypes refine their innervation specificity onto IHCs postnatally during the time when activity is required to refine their molecular phenotype. Type I SGNs thus consist of genetically defined subtypes with distinct physiological properties and innervation patterns. The molecular subtype-specific lines characterized here will provide important tools for investigating the role of the physiologically distinct type I SGNs in encoding sound signals.


Cy3-RgIA-5727 Labels and Inhibits α9-Containing nAChRs of Cochlear Hair Cells.

  • Fernando Fisher‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2021‎

Efferent cholinergic neurons inhibit sensory hair cells of the vertebrate inner ear through the combined action of calcium-permeable α9α10-containing nicotinic acetylcholine receptors (nAChRs) and associated calcium-dependent potassium channels. The venom of cone snails is a rich repository of bioactive peptides, many with channel blocking activities. The conopeptide analog, RgIA-5474, is a specific and potent antagonist of α9α10-containing nAChRs. We added an alkyl functional group to the N-terminus of the RgIA-5474, to enable click chemistry addition of the fluorescent cyanine dye, Cy3. The resulting peptide, Cy3-RgIA-5727, potently blocked mouse α9α10 nAChRs expressed in Xenopus oocytes (IC50 23 pM), with 290-fold less activity on α7 nAChRs and 40,000-fold less activity on all other tested nAChR subtypes. The tight binding of Cy3-RgIA-5727 provided robust visualization of hair cell nAChRs juxtaposed to cholinergic efferent terminals in excised, unfixed cochlear tissue from mice. Presumptive postsynaptic sites on outer hair cells (OHCs) were labeled, but absent from inner hair cells (IHCs) and from OHCs in cochlear tissue from α9-null mice and in cochlear tissue pre-incubated with non-Cy3-conjugated RgIA-5474. In cochlear tissue from younger (postnatal day 10) mice, Cy3-RgIA-5727 also labeled IHCs, corresponding to transient efferent innervation at that age. Cy3 puncta in Kölliker's organ remained in the α9-null tissue. Pre-exposure with non-Cy3-conjugated RgIA-5474 or bovine serum albumin reduced this non-specific labeling to variable extents in different preparations. Cy3-RgIA-5727 and RgIA-5474 blocked the native hair cell nAChRs, within the constraints of application to the excised cochlear tissue. Cy3-RgIA-5727 or RgIA-5474 block of efferent synaptic currents in young IHCs was not relieved after 50 min washing, so effectively irreversible.


Clustered Ca2+ Channels Are Blocked by Synaptic Vesicle Proton Release at Mammalian Auditory Ribbon Synapses.

  • Philippe F Y Vincent‎ et al.
  • Cell reports‎
  • 2018‎

A Ca2+ current transient block (ICaTB) by protons occurs at some ribbon-type synapses after exocytosis, but this has not been observed at mammalian hair cells. Here we show that a robust ICaTB occurs at post-hearing mouse and gerbil inner hair cell (IHC) synapses, but not in immature IHC synapses, which contain non-compact active zones, where Ca2+ channels are loosely coupled to the release sites. Unlike ICaTB at other ribbon synapses, ICaTB in mammalian IHCs displays a surprising multi-peak structure that mirrors the EPSCs seen in paired recordings. Desynchronizing vesicular release with intracellular BAPTA or by deleting otoferlin, the Ca2+ sensor for exocytosis, greatly reduces ICaTB, whereas enhancing release synchronization by raising Ca2+ influx or temperature increases ICaTB. This suggests that ICaTB is produced by fast multivesicular proton-release events. We propose that ICaTB may function as a submillisecond feedback mechanism contributing to the auditory nerve's fast spike adaptation during sound stimulation.


Engineering olivocochlear inhibition to reduce acoustic trauma.

  • Yuanyuan Zhang‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2023‎

Efferent brain-stem neurons release acetylcholine to desensitize cochlear hair cells and can protect the inner ear from acoustic trauma. That protection is absent from knockout mice lacking efferent inhibition and is stronger in mice with a gain-of-function point mutation of the hair cell-specific nicotinic acetylcholine receptor. The present work uses viral transduction of gain-of-function receptors to restore acoustic prophylaxis to the knockout mice. Widespread postsynaptic expression of the transgene was visualized in excised tissue with a fluorophore-conjugated peptide toxin that binds selectively to hair cell acetylcholine receptors. Viral transduction into efferent knockout mice reduced the temporary hearing loss measured 1 day post acoustic trauma. The acoustic evoked-response waveform (auditory brain-stem response) recovered more rapidly in treated mice than in control mice. Thus, both cochlear amplification by outer hair cells (threshold shift) and afferent signaling (evoked-response amplitude) in knockout mice were protected by viral transduction of hair cell acetylcholine receptors. Gene therapy to strengthen efferent cochlear feedback could be complementary to existing and future therapies to prevent hearing loss, including ear coverings, hearing aids, single-gene repair, or small-molecule therapies.


Auditory Hair Cells and Spiral Ganglion Neurons Regenerate Synapses with Refined Release Properties In Vitro.

  • Philippe F Y Vincent‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing 'synaptopathy 'and hearing loss. Co-cultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that newly formed IHC synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When older organs of Corti were plated, synaptic activity probed by deconvolution, showed more mature release properties, closer to the highly specialized mode of IHC synaptic transmission that is crucial for coding the sound signal. This newly developed functional assessment of regenerated IHC synapses provides a powerful tool for testing approaches to improve synapse regeneration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: