2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Training health care providers to administer VIA as a screening test for cervical cancer: a systematic review of essential training components.

  • Thea Beate Brevik‎ et al.
  • BMC medical education‎
  • 2023‎

Training health care providers to administer visual inspection after application of acetic acid (VIA) is paramount in improving cervical cancer screening services for women in low- and middle-income countries. The objective of this systematic review was to create a framework of essential VIA training components and provide illustrating examples of how VIA training programs can be carried out in different clinical settings.


Small-conductance calcium-activated potassium type 2 channels (SK2, KCa2.2) in human brain.

  • Michael Willis‎ et al.
  • Brain structure & function‎
  • 2017‎

SK2 (KCa2.2) channels are voltage-independent Ca2+-activated K+ channels that regulate neuronal excitability in brain regions important for memory formation. In this study, we investigated the distribution and expression of SK2 channels in human brain by Western blot analysis and immunohistochemistry. Immunoblot analysis of human brain indicated expression of four distinct SK2 channel isoforms: the standard, the long and two short isoforms. Immunohistochemistry in paraffin-embedded post-mortem brain sections was performed in the hippocampal formation, amygdala and neocortex. In hippocampus, SK2-like immunoreactivity could be detected in strata oriens and radiatum of area CA1-CA2 and in the molecular layer. In the amygdala, SK2-like immunoreactivity was highest in the basolateral nuclei, while in neocortex, staining was mainly found enriched in layer V. Activation of SK2 channels is thought to regulate neuronal excitability in brain by contributing to the medium afterhyperpolarization. However, SK2 channels are blocked by apamin with a sensitivity that suggests heteromeric channels. The herein first shown expression of SK2 human isoform b in brain could explain the variability of electrophysiological findings observed with SK2 channels.


Regression analysis with categorized regression calibrated exposure: some interesting findings.

  • Ingvild Dalen‎ et al.
  • Emerging themes in epidemiology‎
  • 2006‎

Regression calibration as a method for handling measurement error is becoming increasingly well-known and used in epidemiologic research. However, the standard version of the method is not appropriate for exposure analyzed on a categorical (e.g. quintile) scale, an approach commonly used in epidemiologic studies. A tempting solution could then be to use the predicted continuous exposure obtained through the regression calibration method and treat it as an approximation to the true exposure, that is, include the categorized calibrated exposure in the main regression analysis.


The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvbeta1.

  • Uwe Schulte‎ et al.
  • Neuron‎
  • 2006‎

The voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.1-containing channels are complexed with Lgi1, the functionally unassigned product of the leucine-rich glioma inactivated gene 1 (LGI1), which is causative for an autosomal dominant form of lateral temporal lobe epilepsy (ADLTE). In the hippocampal formation, both Kv1.1 and Lgi1 are coassembled with Kv1.4 and Kvbeta1 in axonal terminals. In A-type channels composed of these subunits, Lgi1 selectively prevents N-type inactivation mediated by the Kvbeta1 subunit. In contrast, defective Lgi1 molecules identified in ADLTE patients fail to exert this effect resulting in channels with rapid inactivation kinetics. The results establish Lgi1 as a novel subunit of Kv1.1-associated protein complexes and suggest that changes in inactivation gating of presynaptic A-type channels may promote epileptic activity.


Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.

  • Sandra Rizzi‎ et al.
  • The Journal of comparative neurology‎
  • 2016‎

The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.


Direct association of the reticulon protein RTN1A with the ryanodine receptor 2 in neurons.

  • Levent Kaya‎ et al.
  • Biochimica et biophysica acta‎
  • 2013‎

RTN1A is a reticulon protein with predominant localization in the endoplasmic reticulum (ER). It was previously shown that RTN1A is expressed in neurons of the mammalian central nervous system but functional information remains sparse. To elucidate the neuronal function of RTN1A, we chose to focus our investigation on identifying possible novel binding partners specifically interacting with the unique N-terminus of RTN1A. Using a nonbiased approach involving GST pull-downs and MS analysis, we identified the intracellular calcium release channel ryanodine receptor 2 (RyR2) as a direct binding partner of RTN1A. The RyR2 binding site was localized to a highly conserved 150-amino acid residue region. RTN1A displays high preference for RyR2 binding in vitro and in vivo and both proteins colocalize in hippocampal neurons and Purkinje cells. Moreover, we demonstrate the precise subcellular localization of RTN1A in Purkinje cells and show that RTN1A inhibits RyR channels in [(3)H]ryanodine binding studies on brain synaptosomes. In a functional assay, RTN1A significantly reduced RyR2-mediated Ca(2+) oscillations. Thus, RTN1A and RyR2 might act as functional partners in the regulation of cytosolic Ca(2+) dynamics the in neurons.


Lifestyle and Work-Related Factors Associated with Work Ability and Work Participation for People with Obesity: A Prospective Observational Study After Vocational Rehabilitation.

  • Anita Dyb Linge‎ et al.
  • Diabetes, metabolic syndrome and obesity : targets and therapy‎
  • 2021‎

We aimed to investigate which changes in the explanatory factors that were associated with positive change in the work ability score (WAS) and degree of work participation (DWP) for participants in a new 1-year vocational rehabilitation (VR) program for people on or at risk of sick leave due to obesity or obesity-related problems.


Blood cell gene expression associated with cellular stress defense is modulated by antioxidant-rich food in a randomised controlled clinical trial of male smokers.

  • Siv K Bøhn‎ et al.
  • BMC medicine‎
  • 2010‎

Plant-based diets rich in fruit and vegetables can prevent development of several chronic age-related diseases. However, the mechanisms behind this protective effect are not elucidated. We have tested the hypothesis that intake of antioxidant-rich foods can affect groups of genes associated with cellular stress defence in human blood cells.


Effect of culturally tailored education on attendance at mammography and the Papanicolaou test.

  • Thea Beate Brevik‎ et al.
  • Health services research‎
  • 2020‎

To determine the effectiveness of culturally tailored education on attendance at breast and cervical cancer screening among ethnic minority women.


Changes to body mass index, work self-efficacy, health-related quality of life, and work participation in people with obesity after vocational rehabilitation: a prospective observational study.

  • Anita Dyb Linge‎ et al.
  • BMC public health‎
  • 2021‎

People on or at risk of sick leave from work due to obesity or obesity-related problems participated in a new vocational rehabilitation (VR). The study aimed to examine the outcome changes in the participants' health-related quality of life (HRQoL), body mass index (BMI), return to work self-efficacy (RTWSE), work ability scale (WAS) and degree of work participation (DWP) after their participation in the 12-month VR programme. The secondary aim was to examine associations between the outcome changes and HRQoL at 12-month follow-up, measured with the HRQoL 15D instrument (15D).


Identification of voltage-gated K(+) channel beta 2 (Kvβ2) subunit as a novel interaction partner of the pain transducer Transient Receptor Potential Vanilloid 1 channel (TRPV1).

  • Carlo Bavassano‎ et al.
  • Biochimica et biophysica acta‎
  • 2013‎

The Transient Receptor Potential Vanilloid 1 (TRPV1, vanilloid receptor 1) ion channel plays a key role in the perception of thermal and inflammatory pain, however, its molecular environment in dorsal root ganglia (DRG) is largely unexplored. Utilizing a panel of sequence-directed antibodies against TRPV1 protein and mouse DRG membranes, the channel complex from mouse DRG was detergent-solubilized, isolated by immunoprecipitation and subsequently analyzed by mass spectrometry. A number of potential TRPV1 interaction partners were identified, among them cytoskeletal proteins, signal transduction molecules, and established ion channel subunits. Based on stringent specificity criteria, the voltage-gated K(+) channel beta 2 subunit (Kvβ2), an accessory subunit of voltage-gated K(+) channels, was identified of being associated with native TRPV1 channels. Reverse co-immunoprecipitation and antibody co-staining experiments confirmed TRPV1/Kvβ2 association. Biotinylation assays in the presence of Kvβ2 demonstrated increased cell surface expression levels of TRPV1, while patch-clamp experiments resulted in a significant increase of TRPV1 sensitivity to capsaicin. Our work shows, for the first time, the association of a Kvβ subunit with TRPV1 channels, and suggests that such interaction may play a role in TRPV1 channel trafficking to the plasma membrane.


Large-conductance calcium-activated potassium channels in purkinje cell plasma membranes are clustered at sites of hypolemmal microdomains.

  • Walter A Kaufmann‎ et al.
  • The Journal of comparative neurology‎
  • 2009‎

Calcium-activated potassium channels have been shown to be critically involved in neuronal function, but an elucidation of their detailed roles awaits identification of the microdomains where they are located. This study was undertaken to unravel the precise subcellular distribution of the large-conductance calcium-activated potassium channels (called BK, KCa1.1, or Slo1) in the somatodendritic compartment of cerebellar Purkinje cells by means of postembedding immunogold cytochemistry and SDS-digested freeze-fracture replica labeling (SDS-FRL). We found BK channels to be unevenly distributed over the Purkinje cell plasma membrane. At distal dendritic compartments, BK channels were scattered over the plasma membrane of dendritic shafts and spines but absent from postsynaptic densities. At the soma and proximal dendrites, BK channels formed two distinct pools. One pool was scattered over the plasma membrane, whereas the other pool was clustered in plasma membrane domains overlying subsurface cisterns. The labeling density ratio of clustered to scattered channels was about 60:1, established in SDS-FRL. Subsurface cisterns, also called hypolemmal cisterns, are subcompartments of the endoplasmic reticulum likely representing calciosomes that unload and refill Ca2+ independently. Purkinje cell subsurface cisterns are enriched in inositol 1,4,5-triphosphate receptors that mediate the effects of several neurotransmitters, hormones, and growth factors by releasing Ca2+ into the cytosol, generating local Ca2+ sparks. Such increases in cytosolic [Ca2+] may be sufficient for BK channel activation. Clustered BK channels in the plasma membrane may thus participate in building a functional unit (plasmerosome) with the underlying calciosome that contributes significantly to local signaling in Purkinje cells.


Non-Motor Symptoms in Parkinson's Disease are Reduced by Nabilone.

  • Marina Peball‎ et al.
  • Annals of neurology‎
  • 2020‎

The objective of this study was to assess the efficacy and safety of nabilone, a synthetic tetrahydrocannabinol analogue, as a treatment for non-motor symptoms (NMS) in Parkinson's disease (PD).


Identification of potential novel interaction partners of the sodium-activated potassium channels Slick and Slack in mouse brain.

  • Sandra Rizzi‎ et al.
  • Biochemistry and biophysics reports‎
  • 2015‎

The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are paralogous channels of the Slo family of high-conductance potassium channels. Slick and Slack channels are widely distributed in the mammalian CNS and they play a role in slow afterhyperpolarization, generation of depolarizing afterpotentials and in setting and stabilizing the resting potential. In the present study we used a combined approach of (co)-immunoprecipitation studies, Western blot analysis, double immunofluorescence and mass spectrometric sequencing in order to investigate protein-protein interactions of the Slick and Slack channels. The data strongly suggest that Slick and Slack channels co-assemble into identical cellular complexes. Double immunofluorescence experiments revealed that Slick and Slack channels co-localize in distinct mouse brain regions. Moreover, we identified the small cytoplasmic protein beta-synuclein and the transmembrane protein 263 (TMEM 263) as novel interaction partners of both, native Slick and Slack channels. In addition, the inactive dipeptidyl-peptidase (DPP 10) and the synapse associated protein 102 (SAP 102) were identified as constituents of the native Slick and Slack channel complexes in the mouse brain. This study presents new insights into protein-protein interactions of native Slick and Slack channels in the mouse brain.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: