2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Systemic inflammation induces acute working memory deficits in the primed brain: relevance for delirium.

  • Carol Murray‎ et al.
  • Neurobiology of aging‎
  • 2012‎

Delirium is an acute, severe neuropsychiatric syndrome, characterized by cognitive deficits, that is highly prevalent in aging and dementia and is frequently precipitated by peripheral infections. Delirium is poorly understood and the lack of biologically relevant animal models has limited basic research. Here we hypothesized that synaptic loss and accompanying microglial priming during chronic neurodegeneration in the ME7 mouse model of prion disease predisposes these animals to acute dysfunction in the region of prior pathology upon systemic inflammatory activation. Lipopolysaccharide (LPS; 100 μg/kg) induced acute and transient working memory deficits in ME7 animals on a novel T-maze task, but did not do so in normal animals. LPS-treated ME7 animals showed heightened and prolonged transcription of inflammatory mediators in the central nervous system (CNS), compared with LPS-treated normal animals, despite having equivalent levels of circulating cytokines. The demonstration that prior synaptic loss and microglial priming are predisposing factors for acute cognitive impairments induced by systemic inflammation suggests an important animal model with which to study aspects of delirium during dementia.


The effect of the amount of blocking cue training on blocking of appetitive conditioning in mice.

  • David J Sanderson‎ et al.
  • Behavioural processes‎
  • 2016‎

Conditioning of a target cue is blocked when it occurs in compound with another cue (blocking cue) that has already received conditioning. Although blocking of appetitive conditioning is commonly used in rodents as a test of selective learning, it has been demonstrated rarely in mice. In order to investigate the conditions that result in blocking in mice two studies tested the effect of the extent of prior blocking cue training on blocking of appetitive conditioning. Mice received either 80 or 200 trials of blocking cue training prior to compound conditioning. A control group received only compound training. Experiment 1 assessed the ability of a visual cue to block conditioning to an auditory target cue. Exposure to the context and the unconditioned stimulus, sucrose pellets, was equated across groups. Blocking was evident in mice that received 200, but not 80 training trials with the visual blocking cue. Responding to the blocking cue was similar across groups. Experiment 2 assessed the ability of an auditory cue to block conditioning to a visual target cue. Blocking was evident in mice trained with 80 and 200 auditory blocking cue trials. The results demonstrate that the strength of blocking in mice is dependent on the modality and experience of the blocking cue. Furthermore, prolonged training of the blocking cue after asymptotic levels of conditioned responding have been reached is necessary for blocking to occur under certain conditions suggesting that the strength of conditioned responding is a limited measure of learning.


Age-Dependent Degeneration of Mature Dentate Gyrus Granule Cells Following NMDA Receptor Ablation.

  • Yasuhito Watanabe‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2015‎

N-methyl-D-aspartate receptors (NMDARs) in all hippocampal areas play an essential role in distinct processes of memory formation as well as in sustaining cell survival of postnatally generated neurons in the dentate gyrus (DG). In contrast to the beneficial effects, over-activation of NMDARs has been implicated in many acute and chronic neurological diseases, reason why therapeutic approaches and clinical trials involving receptor blockade have been envisaged for decades. Here we employed genetically engineered mice to study the long-term effect of NMDAR ablation on selective hippocampal neuronal populations. Ablation of either GluN1 or GluN2B causes degeneration of the DG. The neuronal demise affects mature neurons specifically in the dorsal DG and is NMDAR subunit-dependent. Most importantly, the degenerative process exacerbates with increasing age of the animals. These results lead us to conclude that mature granule cells in the dorsal DG undergo neurodegeneration following NMDAR ablation in aged mouse. Thus, caution needs to be exerted when considering long-term administration of NMDAR antagonists for therapeutic purposes.


Contexts control negative contrast and restrict the expression of flavor preference conditioning.

  • Joseph M Austen‎ et al.
  • Journal of experimental psychology. Animal learning and cognition‎
  • 2016‎

Consumption of a high concentration of sucrose can have either a detrimental, negative contrast effect or a facilitatory, preference conditioning effect on subsequent consumption of a low concentration of sucrose, depending on the cues that are present during consumption. The role of context and flavor cues in determining these effects were studied using analysis of the microstructure of licking in mice. Exposure to a high concentration followed by exposure to a low concentration resulted in a transient reduction in mean lick cluster size, which was context dependent (Experiment 1). However, there was no change in the total number of licks or overall consumption. When a flavor that had previously been paired with a high concentration was paired with a low concentration, there was an increase in the total number of licks, and overall consumption, but no change in the mean lick cluster size (Experiment 2). Pairing a high concentration with a flavor in a particular context before pairing the context and flavor compound with a low concentration resulted in abolishing the expression of the flavor preference conditioning effect on the total number of licks and consumption (Experiment 3). These results demonstrate that although context and flavor cues have dissociable effects on licking behavior, their interaction has an antagonistic effect on the behavioral expression of memory.


The AMPA receptor subunits GluR-A and GluR-B reciprocally modulate spinal synaptic plasticity and inflammatory pain.

  • Bettina Hartmann‎ et al.
  • Neuron‎
  • 2004‎

Ca(2+)-permeable AMPA receptors are densely expressed in the spinal dorsal horn, but their functional significance in pain processing is not understood. By disrupting the genes encoding GluR-A or GluR-B, we generated mice exhibiting increased or decreased numbers of Ca(2+)-permeable AMPA receptors, respectively. Here, we demonstrate that AMPA receptors are critical determinants of nociceptive plasticity and inflammatory pain. A reduction in the number of Ca(2+)-permeable AMPA receptors and density of AMPA channel currents in spinal neurons of GluR-A-deficient mice is accompanied by a loss of nociceptive plasticity in vitro and a reduction in acute inflammatory hyperalgesia in vivo. In contrast, an increase in spinal Ca(2+)-permeable AMPA receptors in GluR-B-deficient mice facilitated nociceptive plasticity and enhanced long-lasting inflammatory hyperalgesia. Thus, AMPA receptors are not mere determinants of fast synaptic transmission underlying basal pain sensitivity as previously thought, but are critically involved in activity-dependent changes in synaptic processing of nociceptive inputs.


Reinforcement rate and the balance between excitatory and inhibitory learning: Insights from deletion of the GluA1 AMPA receptor subunit.

  • Joseph M Austen‎ et al.
  • Journal of experimental psychology. Animal learning and cognition‎
  • 2022‎

Conditioned responding is sensitive to reinforcement rate. This rate-sensitivity is impaired in genetically modified mice that lack the GluA1 subunit of the AMPA receptor. A time-dependent application of the Rescorla-Wagner learning rule can be used to derive an account of rate-sensitivity by reflecting the balance of excitatory and inhibitory associative strength over time. By applying this analysis, the impairment in GluA1 knockout mice may be explained by reduced sensitivity to negative prediction error and thus, impaired inhibitory learning, such that excitatory associative strength is not reduced during the nonreinforced periods of a conditioned stimulus. The article describes a test of the role of GluA1 in inhibitory learning that requires summing of the associative strengths of cues presented in compound. Mice were trained on a feature negative discrimination of the form A+/AX-. GluA1 knockout mice acquired the discrimination to a similar extent as controls. The inhibitory properties of cue X were verified in a summation test that included a control for nonassociative, external inhibition. The performance of GluA1 knockout mice was similar to that of controls. However, in line with previous findings, GluA1 deletion impaired the precision of timing of conditioned responding. These results provide further evidence that impaired sensitivity to reinforcement rate is not a consequence of impaired inhibitory learning. The results may more readily fit with accounts of rate sensitivity that propose that it reflects encoding of temporal and numeric information rather than being a consequence of changes in associative strength over time. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Delay of reinforcement versus rate of reinforcement in Pavlovian conditioning.

  • Joseph M Austen‎ et al.
  • Journal of experimental psychology. Animal learning and cognition‎
  • 2019‎

Conditioned stimulus (CS) duration is a determinant of conditioned responding, with increases in duration leading to reductions in response rates. The CS duration effect has been proposed to reflect sensitivity to the reinforcement rate across cumulative exposure to the CS, suggesting that the delay of reinforcement from the onset of the cue is not crucial. Here, we compared the effects of delay and rate of reinforcement on Pavlovian appetitive conditioning in mice. In Experiment 1, the influence of reinforcement delay on the timing of responding was removed by making the duration of cues variable across trials. Mice trained with variable duration cues were sensitive to differences in the rate of reinforcement to a similar extent as mice trained with fixed duration cues. Experiments 2 and 3 tested the independent effects of delay and reinforcement rate. In Experiment 2, food was presented at either the termination of the CS or during the CS. In Experiment 3, food occurred during the CS for all cues. The latter experiment demonstrated an effect of delay, but not reinforcement rate. Experiment 4 ruled out the possibility that the lack of effect of reinforcement rate in Experiment 3 was due to mice failing to learn about the nonreinforced CS exposure after the presentation of food within a trial. These results demonstrate that although the CS duration effect is not simply a consequence of timing of conditioned responses, it is dependent on the delay of reinforcement. The results provide a challenge to current associative and nonassociative, time-accumulation models of learning. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Homers at the Interface between Reward and Pain.

  • Ilona Obara‎ et al.
  • Frontiers in psychiatry‎
  • 2013‎

Pain alters opioid reinforcement, presumably via neuroadaptations within ascending pain pathways interacting with the limbic system. Nerve injury increases expression of glutamate receptors and their associated Homer scaffolding proteins throughout the pain processing pathway. Homer proteins, and their associated glutamate receptors, regulate behavioral sensitivity to various addictive drugs. Thus, we investigated a potential role for Homers in the interactions between pain and drug reward in mice. Chronic constriction injury (CCI) of the sciatic nerve elevated Homer1b/c and/or Homer2a/b expression within all mesolimbic structures examined and for the most part, the Homer increases coincided with elevated mGluR5, GluN2A/B, and the activational state of various down-stream kinases. Behaviorally, CCI mice showed pain hypersensitivity and a conditioned place-aversion (CPA) at a low heroin dose that supported conditioned place-preference (CPP) in naïve controls. Null mutations of Homer1a, Homer1, and Homer2, as well as transgenic disruption of mGluR5-Homer interactions, either attenuated or completely blocked low-dose heroin CPP, and none of the CCI mutant strains exhibited heroin-induced CPA. However, heroin CPP did not depend upon full Homer1c expression within the nucleus accumbens (NAC), as CPP occurred in controls infused locally with small hairpin RNA-Homer1c, although intra-NAC and/or intrathecal cDNA-Homer1c, -Homer1a, and -Homer2b infusions (to best mimic CCI's effects) were sufficient to blunt heroin CPP in uninjured mice. However, arguing against a simple role for CCI-induced increases in either spinal or NAC Homer expression for heroin CPA, cDNA infusion of our various cDNA constructs either did not affect (intrathecal) or attenuated (NAC) heroin CPA. Together, these data implicate increases in glutamate receptor/Homer/kinase activity within limbic structures, perhaps outside the NAC, as possibly critical for switching the incentive motivational properties of heroin following nerve injury, which has relevance for opioid psychopharmacology in individuals suffering from neuropathic pain.


A biphasic reduction in a measure of palatability following sucrose consumption in mice.

  • Jasmin A Strickland‎ et al.
  • Physiology & behavior‎
  • 2018‎

Consumption of foods results in a transient reduction in hedonic value that influences the extent and nature of feeding behavior. The time course of this effect, however, is poorly specified. In an initial experiment, using an analysis of the microstructure of licking in mice we found that consumption of sucrose led to a rapid reduction in lick cluster size, a measure of palatability, which recovered after 10 min, but reemerged 60min after initial consumption. We then replicated the finding that lick cluster size is reduced after 60min, but not 10min, under conditions in which a number of potential behavioural confounds were removed. In Experiment 2 the effect was replicated using a between-subjects design that ruled out the possibility that the effect was a specific consequence of the within-subjects procedures used in the first experiment, in which mice may have come to expect sucrose at different time points within the feeding session. While Experiments 1 and 2 confounded the time between periods of access to sucrose with time since the start of the feeding session, this confound was removed in Experiment 3, and, similar to the previous experiments, it was found that a second reduction in palatability occurred after 60min. Therefore, the effect was dependent only on the time since the previous exposure to sucrose, demonstrating that sucrose consumption initiates a biphasic reduction in palatability. The reduction in lick cluster size after 60min was not typically accompanied by a reduction in consumption suggesting that the more slowly developing reduction in the palatability measure was not simply a consequence of post-ingestive satiety. The cause of the biphasic change is not yet clear, and may reflect independent processes or the consequence of a single process that initiates multiple changes in palatability over time.


Select overexpression of homer1a in dorsal hippocampus impairs spatial working memory.

  • Tansu Celikel‎ et al.
  • Frontiers in neuroscience‎
  • 2007‎

Long Homer proteins forge assemblies of signaling components involved in glutamate receptor signaling in postsynaptic excitatory neurons, including those underlying synaptic transmission and plasticity. The short immediate-early gene (IEG) Homer1a can dynamically uncouple these physical associations by functional competition with long Homer isoforms. To examine the consequences of Homer1a-mediated "uncoupling" for synaptic plasticity and behavior, we generated forebrain-specific tetracycline (tet) controlled expression of Venus-tagged Homer1a (H1aV) in mice. We report that sustained overexpression of H1aV impaired spatial working but not reference memory. Most notably, a similar impairment was observed when H1aV expression was restricted to the dorsal hippocampus (HP), which identifies this structure as the principal cortical area for spatial working memory. Interestingly, H1aV overexpression also abolished maintenance of CA3-CA1 long-term potentiation (LTP). These impairments, generated by sustained high Homer1a levels, identify a requirement for long Homer forms in synaptic plasticity and temporal encoding of spatial memory.


GluA2-lacking AMPA receptors in hippocampal CA1 cell synapses: evidence from gene-targeted mice.

  • Andrei Rozov‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2012‎

The GluA2 subunit in heteromeric alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels restricts Ca(2+) permeability and block by polyamines, rendering linear the current-voltage relationship of these glutamate-gated cation channels. Although GluA2-lacking synaptic AMPA receptors occur in GABA-ergic inhibitory neurons, hippocampal CA1 pyramidal cell synapses are widely held to feature only GluA2 containing AMPA receptors. A controversy has arisen from reports of GluA2-lacking AMPA receptors at hippocampal CA3-to-CA1 cell synapses and a study contesting these findings. Here we sought independent evidence for the presence of GluA2-lacking AMPA receptors in CA1 pyramidal cell synapses by probing the sensitivity of their gated cation channels in wild-type (WT) mice and gene-targeted mouse mutants to philanthotoxin, a specific blocker of GluA2-lacking AMPA receptors. The mutants either lacked GluA2 for maximal philanthotoxin sensitivity, or, for minimal sensitivity, expressed GluA1 solely in a Q/R site-edited version or not at all. Our comparative electrophysiological analyses provide incontrovertible evidence for the presence in wild-type CA1 pyramidal cell synapses of GluA2-less AMPA receptor channels. This article is part of a Special Issue entitled "Calcium permeable AMPARs in synaptic plasticity and disease."


The group II metabotropic glutamate receptor agonist LY354740 and the D2 receptor antagonist haloperidol reduce locomotor hyperactivity but fail to rescue spatial working memory in GluA1 knockout mice.

  • Thomas Boerner‎ et al.
  • The European journal of neuroscience‎
  • 2017‎

Group II metabotropic glutamate receptor agonists have been suggested as potential anti-psychotics, at least in part, based on the observation that the agonist LY354740 appeared to rescue the cognitive deficits caused by non-competitive N-methyl-d-aspartate receptor (NMDAR) antagonists, including spatial working memory deficits in rodents. Here, we tested the ability of LY354740 to rescue spatial working memory performance in mice that lack the GluA1 subunit of the AMPA glutamate receptor, encoded by Gria1, a gene recently implicated in schizophrenia by genome-wide association studies. We found that LY354740 failed to rescue the spatial working memory deficit in Gria1-/- mice during rewarded alternation performance in the T-maze. In contrast, LY354740 did reduce the locomotor hyperactivity in these animals to a level that was similar to controls. A similar pattern was found with the dopamine receptor antagonist haloperidol, with no amelioration of the spatial working memory deficit in Gria1-/- mice, even though the same dose of haloperidol reduced their locomotor hyperactivity. These results with LY354740 contrast with the rescue of spatial working memory in models of glutamatergic hypofunction using non-competitive NMDAR antagonists. Future studies should determine whether group II mGluR agonists can rescue spatial working memory deficits with other NMDAR manipulations, including genetic models and other pharmacological manipulations of NMDAR function.


Cue duration determines response rate but not rate of acquisition of Pavlovian conditioning in mice.

  • Joseph M Austen‎ et al.
  • Quarterly journal of experimental psychology (2006)‎
  • 2020‎

The duration of a conditioned stimulus (CS) is a key determinant of Pavlovian conditioning. Rate estimation theory (RET) proposes that reinforcement rate is calculated over cumulative exposure to a cue and the reinforcement rate of a cue, relative to the background reinforcement rate, determines the speed of acquisition of conditioned responding. Consequently, RET predicts that shorter-duration cues require fewer trials to acquisition than longer-duration cues due to the difference in reinforcement rates. We tested this prediction by reanalysing the results of a previously published experiment. Mice received appetitive Pavlovian conditioning of magazine approach behaviour with a 10-s CS and a 40-s CS. Cue duration did not affect the rate at which responding emerged or the rate at which it peaked. The 10-s CS did elicit higher levels of responding than the 40-s CS. These results are not consistent with rate estimation theory. Instead, they are consistent with an associative analysis that assumes that asymptotic levels of responding reflect the balance between increments and decrements in associative strength across cumulative exposure to a cue.


A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing.

  • Marina Eliava‎ et al.
  • Neuron‎
  • 2016‎

Oxytocin (OT) is a neuropeptide elaborated by the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Magnocellular OT neurons of these nuclei innervate numerous forebrain regions and release OT into the blood from the posterior pituitary. The PVN also harbors parvocellular OT cells that project to the brainstem and spinal cord, but their function has not been directly assessed. Here, we identified a subset of approximately 30 parvocellular OT neurons, with collateral projections onto magnocellular OT neurons and neurons of deep layers of the spinal cord. Evoked OT release from these OT neurons suppresses nociception and promotes analgesia in an animal model of inflammatory pain. Our findings identify a new population of OT neurons that modulates nociception in a two tier process: (1) directly by release of OT from axons onto sensory spinal cord neurons and inhibiting their activity and (2) indirectly by stimulating OT release from SON neurons into the periphery.


Silencing and un-silencing of tetracycline-controlled genes in neurons.

  • Peixin Zhu‎ et al.
  • PloS one‎
  • 2007‎

To identify the underlying reason for the controversial performance of tetracycline (Tet)-controlled regulated gene expression in mammalian neurons, we investigated each of the three components that comprise the Tet inducible systems, namely tetracyclines as inducers, tetracycline-transactivator (tTA) and reverse tTA (rtTA), and tTA-responsive promoters (P(tets)). We have discovered that stably integrated P(tet) becomes functionally silenced in the majority of neurons when it is inactive during development. P(tet) silencing can be avoided when it is either not integrated in the genome or stably-integrated with basal activity. Moreover, long-term, high transactivator levels in neurons can often overcome integration-induced P(tet) gene silencing, possibly by inducing promoter accessibility.


Roles of the AMPA receptor subunit GluA1 but not GluA2 in synaptic potentiation and activation of ERK in the anterior cingulate cortex.

  • Hiroki Toyoda‎ et al.
  • Molecular pain‎
  • 2009‎

Cortical areas including the anterior cingulate cortex (ACC) are important for pain and pleasure. Recent studies using genetic and physiological approaches have demonstrated that the investigation of basic mechanism for long-term potentiation (LTP) in the ACC may reveal key cellular and molecular mechanisms for chronic pain in the cortex. Glutamate N-methyl D-aspartate (NMDA) receptors in the ACC are critical for the induction of LTP, including both NR2A and NR2B subunits. However, cellular and molecular mechanisms for the expression of ACC LTP have been less investigated. Here, we report that the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit, GluA1 but not GluA2 contributes to LTP in the ACC using genetic manipulated mice lacking GluA1 or GluA2 gene. Furthermore, GluA1 knockout mice showed decreased extracellular signal-regulated kinase (ERK) phosphorylation in the ACC in inflammatory pain models in vivo. Our results demonstrate that AMPA receptor subunit GluA1 is a key mechanism for the expression of ACC LTP and inflammation-induced long-term plastic changes in the ACC.


Major signaling pathways in migrating neuroblasts.

  • Konstantin Khodosevich‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2009‎

Neuronal migration is a key process in the developing and adult brain. Numerous factors act on intracellular cascades of migrating neurons and regulate the final position of neurons. One robust migration route persists postnatally - the rostral migratory stream (RMS). To identify genes that govern neuronal migration in this unique structure, we isolated RMS neuroblasts by making use of transgenic mice that express EGFP in this cell population and performed microarray analysis on RNA. We compared gene expression patterns of neuroblasts obtained from two sites of the RMS, one closer to the site of origin, the subventricular zone, and one closer to the site of the final destination, the olfactory bulb (OB). We identified more than 400 upregulated genes, many of which were not known to be involved in migration. These genes were grouped into functional networks by bioinformatics analysis. Selecting a specific upregulated intracellular network, the cytoskeleton pathway, we confirmed by functional in vitro and in vivo analysis that the identified genes of this network affected RMS neuroblast migration. Based on the validity of this approach, we chose four new networks and tested by functional in vivo analysis their involvement in neuroblast migration. Thus, knockdown of Calm1, Gria1 (GluA1) and Camk4 (calmodulin-signaling network), Hdac2 and Hsbp1 (Akt1-DNA transcription network), Vav3 and Ppm1a (growth factor signaling network) affected neuroblast migration to the OB.


GluA1 AMPAR subunit deletion reduces the hedonic response to sucrose but leaves satiety and conditioned responses intact.

  • Joseph M Austen‎ et al.
  • Scientific reports‎
  • 2017‎

The GluA1 subunit of the AMPA receptor has been implicated in schizophrenia. While GluA1 is important for cognition, it is not clear what the role of GluA1 is in hedonic responses that are relevant to the negative symptoms of disorders such as schizophrenia. Here, we tested mice that lack GluA1 (Gria1 -/- mice) on consumption of sucrose solutions using a licking microstructure analysis. GluA1 deletion drastically reduced palatability (as measured by the mean lick cluster size) across a range of sucrose concentrations. Although initial lick rates were reduced, measures of consumption across long periods of access to sucrose solutions were not affected by GluA1 deletion and Gria1 -/- mice showed normal satiety responses to high sucrose concentrations. GluA1 deletion also failed to impair flavour conditioning, in which increased intake of a flavour occurred as a consequence of prior pairing with a high sucrose concentration. These results demonstrate that GluA1 plays a role in responding on the basis of palatability rather than other properties, such as the automatic and learnt post-ingestive, nutritional consequences of sucrose. Therefore, Gria1 -/- mice provide a potential model of anhedonia, adding converging evidence to the role of glutamatergic dysfunction in various symptoms of schizophrenia and related disorders.


The NMDA receptor antagonist MK-801 fails to impair long-term recognition memory in mice when the state-dependency of memory is controlled.

  • Michele Chan‎ et al.
  • Neurobiology of learning and memory‎
  • 2019‎

NMDA receptor-dependent synaptic plasticity has been proposed to be important for encoding of memories. Consistent with this hypothesis, the non-competitive NMDA receptor antagonist, MK-801, has been found to impair performance on tests of memory. Interpretation of some of these findings has, however, been complicated by the fact that the drug-state of animals has differed during encoding and tests of memory. Therefore, it is possible that MK-801 may result in state-dependent retrieval or expression of memory rather than actually impairing encoding itself. We tested this hypothesis in mice using tests of object recognition memory with a 24-hour delay between the encoding and test phase. Mice received injections of either vehicle or MK-801 prior to the encoding phase and the test phase. In Experiment 1, a low dose of MK-801 (0.01 mg/kg) impaired performance when the drug-state (vehicle or MK-801) of mice changed between encoding and test, but there was no significant effect of MK-801 on encoding. In Experiment 2, a higher dose of MK-801 (0.1 mg/kg) failed to impair object recognition memory when mice received the drug prior to both encoding and test compared to mice that received vehicle. MK-801 did not affect object exploration, but it did induce locomotor hyperactivity at the higher dose. These results suggest that some previous demonstrations of MK-801 effects may reflect a failure to express or retrieve memory due to the state-dependency of memory rather than impaired encoding of memory.


Synaptic NR2A- but not NR2B-Containing NMDA Receptors Increase with Blockade of Ionotropic Glutamate Receptors.

  • Jakob von Engelhardt‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2009‎

NMDA receptors (NMDAR) are key molecules involved in physiological and pathophysiological brain processes such as plasticity and excitotoxicity. Neuronal activity regulates NMDA receptor levels in the cell membrane. However, little is known on which time scale this regulation occurs and whether the two main diheteromeric NMDA receptor subtypes in forebrain, NR1/NR2A and NR1/NR2B, are regulated in a similar fashion. As these differ considerably in their electrophysiological properties, the NR2A/NR2B ratio affects the neurons' reaction to NMDA receptor activation. Here we provide evidence that the basal turnover rate in the cell membrane of NR2A- and NR2B-containing receptors is comparable. However, the level of the NR2A subtype in the cell membrane is highly regulated by NMDA receptor activity, resulting in a several-fold increased insertion of new receptors after blocking NMDAR for 8 h. Blocking AMPA receptors also increases the delivery of NR2A-containing receptors to the cell membrane. In contrast, the amount of NR2B-containing receptors in the cell membrane is not affected by ionotropic glutamate receptor block. Moreover, electrophysiological analysis of synaptic currents in hippocampal cultures and CA1 neurons of hippocampal slices revealed that after 8 h of NMDA receptor blockade the NMDA EPSCs increase as a result of augmented NMDA receptor-mediated currents. In conclusion, synaptic NR2A- but not NR2B-containing receptors are dynamically regulated, enabling neurons to change their NR2A/NR2B ratio within a time scale of hours.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: