Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta.

  • Shawna M Pyott‎ et al.
  • American journal of human genetics‎
  • 2013‎

Osteogenesis imperfecta (OI) is a heritable disorder that ranges in severity from death in the perinatal period to an increased lifetime risk of fracture. Mutations in COL1A1 and COL1A2, which encode the chains of type I procollagen, result in dominant forms of OI, and mutations in several other genes result in recessive forms of OI. Here, we describe four recessive-OI-affected families in which we identified causative mutations in wingless-type MMTV integration site family 1 (WNT1). In family 1, we identified a homozygous missense mutation by exome sequencing. In family 2, we identified a homozygous nonsense mutation predicted to produce truncated WNT1. In family 3, we found a nonsense mutation and a single-nucleotide duplication on different alleles, and in family 4, we found a homozygous 14 bp deletion. The mutations in families 3 and 4 are predicted to result in nonsense-mediated mRNA decay and the absence of WNT1. WNT1 is a secreted signaling protein that binds the frizzled receptor (FZD) and the coreceptor low-density lipoprotein-receptor-related protein 5 (LRP5). Biallelic loss-of-function mutations in LRP5 result in recessive osteoporosis-pseudoglioma syndrome with low bone mass, whereas heterozygous gain-of-function mutations result in van Buchem disease with elevated bone density. Biallelic loss-of-function mutations in WNT1 result in a recessive clinical picture that includes bone fragility with a moderately severe and progressive presentation that is not easily distinguished from dominant OI type III.


CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta.

  • Roy Morello‎ et al.
  • Cell‎
  • 2006‎

Prolyl hydroxylation is a critical posttranslational modification that affects structure, function, and turnover of target proteins. Prolyl 3-hydroxylation occurs at only one position in the triple-helical domain of fibrillar collagen chains, and its biological significance is unknown. CRTAP shares homology with a family of putative prolyl 3-hydroxylases (P3Hs), but it does not contain their common dioxygenase domain. Loss of Crtap in mice causes an osteochondrodysplasia characterized by severe osteoporosis and decreased osteoid production. CRTAP can form a complex with P3H1 and cyclophilin B (CYPB), and Crtap-/- bone and cartilage collagens show decreased prolyl 3-hydroxylation. Moreover, mutant collagen shows evidence of overmodification, and collagen fibrils in mutant skin have increased diameter consistent with altered fibrillogenesis. In humans, CRTAP mutations are associated with the clinical spectrum of recessive osteogenesis imperfecta, including the type II and VII forms. Hence, dysregulation of prolyl 3-hydroxylation is a mechanism for connective tissue disease.


Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk.

  • Minta Thomas‎ et al.
  • American journal of human genetics‎
  • 2020‎

Accurate colorectal cancer (CRC) risk prediction models are critical for identifying individuals at low and high risk of developing CRC, as they can then be offered targeted screening and interventions to address their risks of developing disease (if they are in a high-risk group) and avoid unnecessary screening and interventions (if they are in a low-risk group). As it is likely that thousands of genetic variants contribute to CRC risk, it is clinically important to investigate whether these genetic variants can be used jointly for CRC risk prediction. In this paper, we derived and compared different approaches to generating predictive polygenic risk scores (PRS) from genome-wide association studies (GWASs) including 55,105 CRC-affected case subjects and 65,079 control subjects of European ancestry. We built the PRS in three ways, using (1) 140 previously identified and validated CRC loci; (2) SNP selection based on linkage disequilibrium (LD) clumping followed by machine-learning approaches; and (3) LDpred, a Bayesian approach for genome-wide risk prediction. We tested the PRS in an independent cohort of 101,987 individuals with 1,699 CRC-affected case subjects. The discriminatory accuracy, calculated by the age- and sex-adjusted area under the receiver operating characteristics curve (AUC), was highest for the LDpred-derived PRS (AUC = 0.654) including nearly 1.2 M genetic variants (the proportion of causal genetic variants for CRC assumed to be 0.003), whereas the PRS of the 140 known variants identified from GWASs had the lowest AUC (AUC = 0.629). Based on the LDpred-derived PRS, we are able to identify 30% of individuals without a family history as having risk for CRC similar to those with a family history of CRC, whereas the PRS based on known GWAS variants identified only top 10% as having a similar relative risk. About 90% of these individuals have no family history and would have been considered average risk under current screening guidelines, but might benefit from earlier screening. The developed PRS offers a way for risk-stratified CRC screening and other targeted interventions.


Rates of Actionable Genetic Findings in Individuals with Colorectal Cancer or Polyps Ascertained from a Community Medical Setting.

  • Adam S Gordon‎ et al.
  • American journal of human genetics‎
  • 2019‎

As clinical testing for Mendelian causes of colorectal cancer (CRC) is largely driven by recognition of family history and early age of onset, the rates of such findings among individuals with prevalent CRC not recognized to have these features is largely unknown. We evaluated actionable genomic findings in community-based participants ascertained by three phenotypes: (1) CRC, (2) one or more adenomatous colon polyps, and (3) control participants over age 59 years without CRC or colon polyps. These participants underwent sequencing for a panel of genes that included colorectal cancer/polyp (CRC/P)-associated and actionable incidental findings genes. Those with CRC had a 3.8% rate of positive results (pathogenic or likely pathogenic) for a CRC-associated gene variant, despite generally being older at CRC onset (mean 72 years). Those ascertained for polyps had a 0.8% positive rate and those with no CRC/P had a positive rate of 0.2%. Though incidental finding rates unrelated to colon cancer were similar for all groups, our positive rate for cardiovascular findings exceeds disease prevalence, suggesting that variant interpretation challenges or low penetrance in these genes. The rate of HFE c.845G>A (p.Cys282Tyr) homozygotes in the CRC group reinforces a previously reported, but relatively unexplored, association between hemochromatosis and CRC. These results in a general clinical population suggest that current testing strategies could be improved in order to better detect Mendelian CRC-associated conditions. These data also underscore the need for additional functional and familial evidence to clarify the pathogenicity and penetrance of variants deemed pathogenic or likely pathogenic, particularly among the actionable genes associated with cardiovascular disease.


Dominant-negative variant in SLC1A4 causes an autosomal dominant epilepsy syndrome.

  • Jonai Pujol-Giménez‎ et al.
  • Annals of clinical and translational neurology‎
  • 2023‎

SLC1A4 is a trimeric neutral amino acid transporter essential for shuttling L-serine from astrocytes into neurons. Individuals with biallelic variants in SLC1A4 are known to have spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM) syndrome, but individuals with heterozygous variants are not thought to have disease. We identify an 8-year-old patient with global developmental delay, spasticity, epilepsy, and microcephaly who has a de novo heterozygous three amino acid duplication in SLC1A4 (L86_M88dup). We demonstrate that L86_M88dup causes a dominant-negative N-glycosylation defect of SLC1A4, which in turn reduces the plasma membrane localization of SLC1A4 and the transport rate of SLC1A4 for L-serine.


Joint linkage and association analysis with exome sequence data implicates SLC25A40 in hypertriglyceridemia.

  • Elisabeth A Rosenthal‎ et al.
  • American journal of human genetics‎
  • 2013‎

Hypertriglyceridemia (HTG) is a heritable risk factor for cardiovascular disease. Investigating the genetics of HTG may identify new drug targets. There are ~35 known single-nucleotide variants (SNVs) that explain only ~10% of variation in triglyceride (TG) level. Because of the genetic heterogeneity of HTG, a family study design is optimal for identification of rare genetic variants with large effect size because the same mutation can be observed in many relatives and cosegregation with TG can be tested. We considered HTG in a five-generation family of European American descent (n = 121), ascertained for familial combined hyperlipidemia. By using Bayesian Markov chain Monte Carlo joint oligogenic linkage and association analysis, we detected linkage to chromosomes 7 and 17. Whole-exome sequence data revealed shared, highly conserved, private missense SNVs in both SLC25A40 on chr7 and PLD2 on chr17. Jointly, these SNVs explained 49% of the genetic variance in TG; however, only the SLC25A40 SNV was significantly associated with TG (p = 0.0001). This SNV, c.374A>G, causes a highly disruptive p.Tyr125Cys substitution just outside the second helical transmembrane region of the SLC25A40 inner mitochondrial membrane transport protein. Whole-gene testing in subjects from the Exome Sequencing Project confirmed the association between TG and SLC25A40 rare, highly conserved, coding variants (p = 0.03). These results suggest a previously undescribed pathway for HTG and illustrate the power of large pedigrees in the search for rare, causal variants.


EMQN best practice guidelines for the laboratory diagnosis of osteogenesis imperfecta.

  • Fleur S van Dijk‎ et al.
  • European journal of human genetics : EJHG‎
  • 2012‎

Osteogenesis imperfecta (OI) comprises a group of inherited disorders characterized by bone fragility and increased susceptibility to fractures. Historically, the laboratory confirmation of the diagnosis OI rested on cultured dermal fibroblasts to identify decreased or abnormal production of abnormal type I (pro)collagen molecules, measured by gel electrophoresis. With the discovery of COL1A1 and COL1A2 gene variants as a cause of OI, sequence analysis of these genes was added to the diagnostic process. Nowadays, OI is known to be genetically heterogeneous. About 90% of individuals with OI are heterozygous for causative variants in the COL1A1 and COL1A2 genes. The majority of remaining affected individuals have recessively inherited forms of OI with the causative variants in the more recently discovered genes CRTAP, FKBP10, LEPRE1,PLOD2, PPIB, SERPINF1, SERPINH1 and SP7, or in other yet undiscovered genes. These advances in the molecular genetic diagnosis of OI prompted us to develop new guidelines for molecular testing and reporting of results in which we take into account that testing is also used to 'exclude' OI when there is suspicion of non-accidental injury. Diagnostic flow, methods and reporting scenarios were discussed during an international workshop with 17 clinicians and scientists from 11 countries and converged in these best practice guidelines for the laboratory diagnosis of OI.


Penetrance of Breast Cancer Susceptibility Genes From the eMERGE III Network.

  • Xiao Fan‎ et al.
  • JNCI cancer spectrum‎
  • 2021‎

Unbiased estimates of penetrance are challenging but critically important to make informed choices about strategies for risk management through increased surveillance and risk-reducing interventions.


Selection, optimization, and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse populations.

  • Niall J Lennon‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

Polygenic risk scores (PRS) have improved in predictive performance supporting their use in clinical practice. Reduced predictive performance of PRS in diverse populations can exacerbate existing health disparities. The NHGRI-funded eMERGE Network is returning a PRS-based genome-informed risk assessment to 25,000 diverse adults and children. We assessed PRS performance, medical actionability, and potential clinical utility for 23 conditions. Standardized metrics were considered in the selection process with additional consideration given to strength of evidence in African and Hispanic populations. Ten conditions were selected with a range of high-risk thresholds: atrial fibrillation, breast cancer, chronic kidney disease, coronary heart disease, hypercholesterolemia, prostate cancer, asthma, type 1 diabetes, obesity, and type 2 diabetes. We developed a pipeline for clinical PRS implementation, used genetic ancestry to calibrate PRS mean and variance, created a framework for regulatory compliance, and developed a PRS clinical report. eMERGE's experience informs the infrastructure needed to implement PRS-based implementation in diverse clinical settings.


Evaluation of the portability of computable phenotypes with natural language processing in the eMERGE network.

  • Jennifer A Pacheco‎ et al.
  • Scientific reports‎
  • 2023‎

The electronic Medical Records and Genomics (eMERGE) Network assessed the feasibility of deploying portable phenotype rule-based algorithms with natural language processing (NLP) components added to improve performance of existing algorithms using electronic health records (EHRs). Based on scientific merit and predicted difficulty, eMERGE selected six existing phenotypes to enhance with NLP. We assessed performance, portability, and ease of use. We summarized lessons learned by: (1) challenges; (2) best practices to address challenges based on existing evidence and/or eMERGE experience; and (3) opportunities for future research. Adding NLP resulted in improved, or the same, precision and/or recall for all but one algorithm. Portability, phenotyping workflow/process, and technology were major themes. With NLP, development and validation took longer. Besides portability of NLP technology and algorithm replicability, factors to ensure success include privacy protection, technical infrastructure setup, intellectual property agreement, and efficient communication. Workflow improvements can improve communication and reduce implementation time. NLP performance varied mainly due to clinical document heterogeneity; therefore, we suggest using semi-structured notes, comprehensive documentation, and customization options. NLP portability is possible with improved phenotype algorithm performance, but careful planning and architecture of the algorithms is essential to support local customizations.


Monoallelic and biallelic CREB3L1 variant causes mild and severe osteogenesis imperfecta, respectively.

  • Rachel B Keller‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2018‎

PurposeOsteogenesis imperfecta (OI) is a heritable skeletal dysplasia. Dominant pathogenic variants in COL1A1 and COL1A2 explain the majority of OI cases. At least 15 additional genes have been identified, but those still do not account for all OI phenotypes that present. We sought the genetic cause of mild and lethal OI phenotypes in an unsolved family.MethodsWe performed exome sequencing on seven members of the family, both affected and unaffected.ResultsWe identified a variant in cyclic AMP responsive element binding protein 3-like 1 (CREB3L1) in a consanguineous family. The variant caused a prenatal/perinatal lethal OI in homozygotes, similar to that seen in OI type II as a result of mutations in type I collagen genes, and a mild phenotype (fractures, blue sclerae) in multiple heterozygous family members. CREB3L1 encodes old astrocyte specifically induced substance (OASIS), an endoplasmic reticulum stress transducer. The variant disrupts a DNA-binding site and prevents OASIS from acting on its transcriptional targets including SEC24D, which encodes a component of the coat protein II complex.ConclusionThis report confirms that CREB3L1 is an OI-related gene and suggests the pathogenic mechanism of CREB3L1-associated OI involves the altered regulation of proteins involved in cellular secretion.


Substitutions for arginine at position 780 in triple helical domain of the α1(I) chain alter folding of the type I procollagen molecule and cause osteogenesis imperfecta.

  • Elena Makareeva‎ et al.
  • PloS one‎
  • 2018‎

OI is a clinically and genetically heterogeneous disorder characterized by bone fragility. More than 90% of patients are heterozygous for mutations in type I collagen genes, COL1A1 and COL1A2, and a common mutation is substitution for an obligatory glycine in the triple helical Gly-X-Y repeats. Few non-glycine substitutions in the triple helical domain have been reported; most result in Y-position substitutions of arginine by cysteine. Here, we investigated leucine and cysteine substitutions for one Y-position arginine, p.Arg958 (Arg780 in the triple helical domain) of proα1(I) chains that cause mild OI. We compared their effects with two substitutions for glycine located in close proximity. Like substitutions for glycine, those for arginine reduced the denaturation temperature of the whole molecule and caused asymmetric posttranslational overmodification of the chains. Circular dichroism and increased susceptibility to cleavage by MMP1, MMP2 and catalytic domain of MMP1 revealed significant destabilization of the triple helix near the collagenase cleavage site. On a cellular level, we observed slower triple helix folding and intracellular collagen retention, which disturbed the Endoplasmic Reticulum function and affected matrix deposition. Molecular dynamic modeling suggested that Arg780 substitutions disrupt the triple helix structure and folding by eliminating hydrogen bonds of arginine side chains, in addition to preventing HSP47 binding. The pathogenic effects of these non-glycine substitutions in bone are probably caused mostly by procollagen misfolding and its downstream effects.


Selection, optimization and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse US populations.

  • Niall J Lennon‎ et al.
  • Nature medicine‎
  • 2024‎

Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer. Standardized metrics were considered in the selection process, with additional consideration given to strength of evidence in African and Hispanic populations. We then developed a pipeline for clinical PRS implementation (score transfer to a clinical laboratory, validation and verification of score performance), and used genetic ancestry to calibrate PRS mean and variance, utilizing genetically diverse data from 13,475 participants of the All of Us Research Program cohort to train and test model parameters. Finally, we created a framework for regulatory compliance and developed a PRS clinical report for return to providers and for inclusion in an additional genome-informed risk assessment. The initial experience from eMERGE can inform the approach needed to implement PRS-based testing in diverse clinical settings.


Actionable exomic incidental findings in 6503 participants: challenges of variant classification.

  • Laura M Amendola‎ et al.
  • Genome research‎
  • 2015‎

Recommendations for laboratories to report incidental findings from genomic tests have stimulated interest in such results. In order to investigate the criteria and processes for assigning the pathogenicity of specific variants and to estimate the frequency of such incidental findings in patients of European and African ancestry, we classified potentially actionable pathogenic single-nucleotide variants (SNVs) in all 4300 European- and 2203 African-ancestry participants sequenced by the NHLBI Exome Sequencing Project (ESP). We considered 112 gene-disease pairs selected by an expert panel as associated with medically actionable genetic disorders that may be undiagnosed in adults. The resulting classifications were compared to classifications from other clinical and research genetic testing laboratories, as well as with in silico pathogenicity scores. Among European-ancestry participants, 30 of 4300 (0.7%) had a pathogenic SNV and six (0.1%) had a disruptive variant that was expected to be pathogenic, whereas 52 (1.2%) had likely pathogenic SNVs. For African-ancestry participants, six of 2203 (0.3%) had a pathogenic SNV and six (0.3%) had an expected pathogenic disruptive variant, whereas 13 (0.6%) had likely pathogenic SNVs. Genomic Evolutionary Rate Profiling mammalian conservation score and the Combined Annotation Dependent Depletion summary score of conservation, substitution, regulation, and other evidence were compared across pathogenicity assignments and appear to have utility in variant classification. This work provides a refined estimate of the burden of adult onset, medically actionable incidental findings expected from exome sequencing, highlights challenges in variant classification, and demonstrates the need for a better curated variant interpretation knowledge base.


Identification, characterization and expression analysis of a new fibrillar collagen gene, COL27A1.

  • James M Pace‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2003‎

The fibrillar collagens provide structural scaffolding and strength to the extracellular matrices of connective tissues. We identified a partial sequence of a new fibrillar collagen gene in the NCBI databases and completed the sequence with bioinformatic approaches and 5' RACE. This gene, designated COL27A1, is approximately 156 kbp long and has 61 exons located on chromosome 9q32-33. The homologous mouse gene is located on chromosome 4. The gene encodes amino- and carboxyl-terminal propeptides similar to those in the 'minor' fibrillar collagens. The triple-helical domain is, however, shorter and contains 994 amino acids with two imperfections of the Gly-Xaa-Yaa repeat pattern. There were three sites of alternative RNA splicing, only one of which led to the intact mRNA that encodes this full-length collagen proalpha chain. Phylogenetic analyses indicated that COL27A1 forms a clade with COL24A1 that is distinct from the two known lineages of fibrillar collagens. Expression analyses of the mouse col27a1 gene demonstrated high expression in cartilage, the eye and ear, but also in lung and colon. It is likely that the major protein product of COL27A1, proalpha1(XXVII), is a component of the extracellular matrices of cartilage and these other tissues. Study of this collagen should yield insights into normal chondrogenesis, and provide clues to the pathogenesis of some chondrodysplasias and disorders of other tissues in which this gene is expressed.


Haploinsufficiency of SF3B4, a component of the pre-mRNA spliceosomal complex, causes Nager syndrome.

  • Francois P Bernier‎ et al.
  • American journal of human genetics‎
  • 2012‎

Nager syndrome, first described more than 60 years ago, is the archetype of a class of disorders called the acrofacial dysostoses, which are characterized by craniofacial and limb malformations. Despite intensive efforts, no gene for Nager syndrome has yet been identified. In an international collaboration, FORGE Canada and the National Institutes of Health Centers for Mendelian Genomics used exome sequencing as a discovery tool and found that mutations in SF3B4, a component of the U2 pre-mRNA spliceosomal complex, cause Nager syndrome. After Sanger sequencing of SF3B4 in a validation cohort, 20 of 35 (57%) families affected by Nager syndrome had 1 of 18 different mutations, nearly all of which were frameshifts. These results suggest that most cases of Nager syndrome are caused by haploinsufficiency of SF3B4. Our findings add Nager syndrome to a growing list of disorders caused by mutations in genes that encode major components of the spliceosome and also highlight the synergistic potential of international collaboration when exome sequencing is applied in the search for genes responsible for rare Mendelian phenotypes.


Mutation and polymorphism spectrum in osteogenesis imperfecta type II: implications for genotype-phenotype relationships.

  • Dale L Bodian‎ et al.
  • Human molecular genetics‎
  • 2009‎

Osteogenesis imperfecta (OI), also known as brittle bone disease, is a clinically and genetically heterogeneous disorder primarily characterized by susceptibility to fracture. Although OI generally results from mutations in the type I collagen genes, COL1A1 and COL1A2, the relationship between genotype and phenotype is not yet well understood. To provide additional data for genotype-phenotype analyses and to determine the proportion of mutations in the type I collagen genes among subjects with lethal forms of OI, we sequenced the coding and exon-flanking regions of COL1A1 and COL1A2 in a cohort of 63 subjects with OI type II, the perinatal lethal form of the disease. We identified 61 distinct heterozygous mutations in type I collagen, including five non-synonymous rare variants of unknown significance, of which 43 had not been seen previously. In addition, we found 60 SNPs in COL1A1, of which 17 were not reported previously, and 82 in COL1A2, of which 18 are novel. In three samples without collagen mutations, we found inactivating mutations in CRTAP and LEPRE1, suggesting a frequency of these recessive mutations of approximately 5% in OI type II. A computational model that predicts the outcome of substitutions for glycine within the triple helical domain of collagen alpha1(I) chains predicted lethality with approximately 90% accuracy. The results contribute to the understanding of the etiology of OI by providing data to evaluate and refine current models relating genotype to phenotype and by providing an unbiased indication of the relative frequency of mutations in OI-associated genes.


Natural variation in four human collagen genes across an ethnically diverse population.

  • Ting-Fung Chan‎ et al.
  • Genomics‎
  • 2008‎

Collagens are members of one of the most important families of structural proteins in higher organisms. There are 28 types of collagens encoded by 43 genes in humans that fall into several different functional protein classes. Mutations in the major fibrillar collagen genes lead to osteogenesis imperfecta (COL1A1 and COL1A2 encoding the chains of Type I collagen), chondrodysplasias (COL2A1 encoding the chains of Type II collagen), and vascular Ehlers-Danlos syndrome (COL3A1 encoding the chains of Type III collagen). Over the past 2 decades, mutations in these collagen genes have been catalogued, in hopes of understanding the molecular etiology of diseases caused by these mutations, characterizing the genotype-phenotype relationships, and developing robust models predicting the molecular and clinical outcomes. To achieve these goals better, it is necessary to understand the natural patterns of variation in collagen genes in human populations. We screened exons, flanking intronic regions, and conserved noncoding regions for variations in COL1A1, COL1A2, COL2A1, and COL3A1 in 48 individuals from each of four ethnically diverse populations. We identified 459 single-nucleotide polymorphisms (SNPs), more than half of which were novel and not found in public databases. Of the 52 SNPs found in coding regions, 15 caused amino acid substitutions while 37 did not. Although the four collagens have similar gene and protein structures, they have different molecular evolutionary characteristics. For example, COL1A1 appears to have been under substantially stronger negative selection than the rest. Phylogenetic analysis also suggests that the four genes have very different evolutionary histories among the different ethnic groups. Our observations suggest that the study of collagen mutations and their relationships with disease phenotypes should be performed in the context of the genetic background of the subjects.


Loci identified by a genome-wide association study of carotid artery stenosis in the eMERGE network.

  • Melody R Palmer‎ et al.
  • Genetic epidemiology‎
  • 2021‎

Carotid artery atherosclerotic disease (CAAD) is a risk factor for stroke. We used a genome-wide association (GWAS) approach to discover genetic variants associated with CAAD in participants in the electronic Medical Records and Genomics (eMERGE) Network. We identified adult CAAD cases with unilateral or bilateral carotid artery stenosis and controls without evidence of stenosis from electronic health records at eight eMERGE sites. We performed GWAS with a model adjusting for age, sex, study site, and genetic principal components of ancestry. In eMERGE we found 1793 CAAD cases and 17,958 controls. Two loci reached genome-wide significance, on chr6 in LPA (rs10455872, odds ratio [OR] (95% confidence interval [CI]) = 1.50 (1.30-1.73), p = 2.1 × 10-8 ) and on chr7, an intergenic single nucleotide variant (SNV; rs6952610, OR (95% CI) = 1.25 (1.16-1.36), p = 4.3 × 10-8 ). The chr7 association remained significant in the presence of the LPA SNV as a covariate. The LPA SNV was also associated with coronary heart disease (CHD; 4199 cases and 11,679 controls) in this study (OR (95% CI) = 1.27 (1.13-1.43), p = 5 × 10-5 ) but the chr7 SNV was not (OR (95% CI) = 1.03 (0.97-1.09), p = .37). Both variants replicated in UK Biobank. Elevated lipoprotein(a) concentrations ([Lp(a)]) and LPA variants associated with elevated [Lp(a)] have previously been associated with CAAD and CHD, including rs10455872. With electronic health record phenotypes in eMERGE and UKB, we replicated a previously known association and identified a novel locus associated with CAAD.


A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids.

  • Shweta Ramdas‎ et al.
  • American journal of human genetics‎
  • 2022‎

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: