Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Suppression of microglia activation after hypoxia-ischemia results in age-dependent improvements in neurologic injury.

  • Ulas Cikla‎ et al.
  • Journal of neuroimmunology‎
  • 2016‎

We previously found increased microglial proliferation and pro-inflammatory cytokine release in infant mice compared to juvenile mice after hypoxia-ischemia (HI). The aim of the current study was to assess for differences in the effect of microglial suppression on HI-induced brain injury in infant and juvenile mice. HI was induced in neonatal (P9) and juvenile (P30) mice and minocycline or vehicle was administered at 2h and 24h post-HI. P9 minocycline-treated mice demonstrated early but transient improvements in neurologic injury, while P30 minocycline-treated mice demonstrated sustained improvements in cerebral atrophy and Morris Water Maze performance at 60days post-HI.


Stimulation of Na(+)/H(+) exchanger isoform 1 promotes microglial migration.

  • Yejie Shi‎ et al.
  • PloS one‎
  • 2013‎

Regulation of microglial migration is not well understood. In this study, we proposed that Na(+)/H(+) exchanger isoform 1 (NHE-1) is important in microglial migration. NHE-1 protein was co-localized with cytoskeletal protein ezrin in lamellipodia of microglia and maintained its more alkaline intracellular pH (pHi). Chemoattractant bradykinin (BK) stimulated microglial migration by increasing lamellipodial area and protrusion rate, but reducing lamellipodial persistence time. Interestingly, blocking NHE-1 activity with its potent inhibitor HOE 642 not only acidified microglia, abolished the BK-triggered dynamic changes of lamellipodia, but also reduced microglial motility and microchemotaxis in response to BK. In addition, NHE-1 activation resulted in intracellular Na(+) loading as well as intracellular Ca(2+) elevation mediated by stimulating reverse mode operation of Na(+)/Ca(2+) exchange (NCXrev). Taken together, our study shows that NHE-1 protein is abundantly expressed in microglial lamellipodia and maintains alkaline pHi in response to BK stimulation. In addition, NHE-1 and NCXrev play a concerted role in BK-induced microglial migration via Na(+) and Ca(2+) signaling.


Role of sodium/hydrogen exchanger isoform 1 in microglial activation and proinflammatory responses in ischemic brains.

  • Yejie Shi‎ et al.
  • Journal of neurochemistry‎
  • 2011‎

Our recent study reveals that Na⁺/H⁺ exchanger isoform 1 (NHE-1) mediates H⁺ extrusion during "respiratory bursting", which is important for microglial activation. In the present study, we further investigated whether NHE-1 plays a role in proinflammatory activation of microglia in vivo using a mouse model of transient focal cerebral ischemia and reperfusion (I/R). Activated microglial cells were identified by their expression of two microglial marker proteins (CD11b and Iba1) as well as by their transformation from a "ramified" to an "amoeboid" morphology. An immediate increase in activated microglial numbers was detected in the ipsilateral ischemic core area of NHE-1⁺/⁺ brains at 1 hour (h) I/1 h R, which gradually decreased during 6-24 h I/R. This was followed by a sharp rise in microglial activation in the peri-infarct area and an increase in proinflammatory cytokine formation at 3 day after I/R. Interestingly, HOE 642 (a potent NHE-1 inhibitor) -treated or NHE-1 heterozygous (NHE-1⁺/⁻) mice exhibited less microglia activation, less NADPH oxidase activation, or a reduced proinflammatory response at 3-7 day after I/R. Blocking NHE-1 activity also significantly decreased microglial phagocytosis in vitro. In contrast, astrogliosis formation in the peri-infarct area was not affected by NHE-1 inhibition. Taken together, our results demonstrate that NHE-1 protein was abundantly expressed in activated microglia and astrocytes. NHE-1 inhibition reduced microglial proinflammatory activation following ischemia.


Comparison of Intracranial Pressure Measurements Before and After Hypertonic Saline or Mannitol Treatment in Children With Severe Traumatic Brain Injury.

  • Patrick M Kochanek‎ et al.
  • JAMA network open‎
  • 2022‎

Hyperosmolar agents are cornerstone therapies for pediatric severe traumatic brain injury. Guideline recommendations for 3% hypertonic saline (HTS) are based on limited numbers of patients, and no study to date has supported a recommendation for mannitol.


Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation.

  • Pelin Cengiz‎ et al.
  • PloS one‎
  • 2014‎

Hypoxia ischemia (HI)-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na(+)/H(+) exchanger isoform 1 (NHE1) protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX). 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H(+) efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1-5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na(+) and Ca(2+) overload. The latter was mediated by reversal of Na(+)/Ca(2+) exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα) during 1-24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na(+) overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H(+) homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na(+) and Ca(2+) homeostasis, which reduces Na(+)-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI.


Prevalence and Risk Factors of Neurologic Manifestations in Hospitalized Children Diagnosed with Acute SARS-CoV-2 or MIS-C.

  • Ericka L Fink‎ et al.
  • Pediatric neurology‎
  • 2022‎

Our objective was to characterize the frequency, early impact, and risk factors for neurological manifestations in hospitalized children with acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or multisystem inflammatory syndrome in children (MIS-C).


ERα Signaling Is Required for TrkB-Mediated Hippocampal Neuroprotection in Female Neonatal Mice after Hypoxic Ischemic Encephalopathy(1,2,3).

  • Ulas Cikla‎ et al.
  • eNeuro‎
  • 2016‎

Male neonate brains are more susceptible to the effects of perinatal asphyxia resulting in hypoxia and ischemia (HI)-related brain injury. The relative resistance of female neonatal brains to adverse consequences of HI suggests that there are sex-specific mechanisms that afford females greater neuroprotection and/or facilitates recovery post-HI. We hypothesized that HI preferentially induces estrogen receptor α (ERα) expression in female neonatal hippocampi and that ERα is coupled to Src family kinase (SFK) activation that in turn augments phosphorylation of the TrkB and thereby results in decreased apoptosis. After inducing the Vannucci's HI model on P9 (C57BL/6J) mice, female and male ERα wild-type (ERα(+/+)) or ERα null mutant (ERα(-/-)) mice received vehicle control or the selective TrkB agonist 7,8-dihydroxyflavone (7,8-DHF). Hippocampi were collected for analysis of mRNA of ERα and BDNF, protein levels of ERα, p-TrkB, p-src, and cleaved caspase 3 (c-caspase-3) post-HI. Our results demonstrate that: (1) HI differentially induces ERα expression in the hippocampus of the female versus male neonate, (2) src and TrkB phosphorylation post-HI is greater in females than in males after 7,8-DHF therapy, (3) src and TrkB phosphorylation post-HI depend on the presence of ERα, and (4) TrkB agonist therapy decreases the c-caspase-3 only in ERα(+/+) female mice hippocampus. Together, these observations provide evidence that female-specific induction of ERα expression confers neuroprotection with TrkB agonist therapy via SFK activation and account for improved functional outcomes in female neonates post-HI.


TrkB-mediated sustained neuroprotection is sex-specific and [Formula: see text]-dependent in adult mice following neonatal hypoxia ischemia.

  • Vishal Chanana‎ et al.
  • Biology of sex differences‎
  • 2024‎

Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of life-long neurological morbidities that result in learning and memory impairments. Evidence suggests that male neonates are more susceptible to the detrimental effects of HI, yet the mechanisms mediating these sex-specific responses to neural injury in neonates remain poorly understood. We previously tested the effects of treatment with a small molecule agonist of the tyrosine kinase B receptor (TrkB), 7,8-dihydroxyflavone (DHF) following neonatal HI and determined that females, but not males exhibit increased phosphorylation of TrkB and reduced apoptosis in their hippocampi. Moreover, these female-specific effects of the TrkB agonist were found to be dependent upon the expression of [Formula: see text]. These findings demonstrated that TrkB activation in the presence of [Formula: see text] comprises one pathway by which neuroprotection may be conferred in a female-specific manner. The goal of this study was to determine the role of [Formula: see text]-dependent TrkB-mediated neuroprotection in memory and anxiety in young adult mice exposed to HI during the neonatal period.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: