Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38 papers

Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells.

  • Yinghua Zhao‎ et al.
  • Nature communications‎
  • 2016‎

Dectin-1 signalling in dendritic cells (DCs) has an important role in triggering protective antifungal Th17 responses. However, whether dectin-1 directs DCs to prime antitumour Th9 cells remains unclear. Here, we show that DCs activated by dectin-1 agonists potently promote naive CD4(+) T cells to differentiate into Th9 cells. Abrogation of dectin-1 in DCs completely abolishes their Th9-polarizing capability in response to dectin-1 agonist curdlan. Notably, dectin-1 stimulation of DCs upregulates TNFSF15 and OX40L, which are essential for dectin-1-activated DC-induced Th9 cell priming. Mechanistically, dectin-1 activates Syk, Raf1 and NF-κB signalling pathways, resulting in increased p50 and RelB nuclear translocation and TNFSF15 and OX40L expression. Furthermore, immunization of tumour-bearing mice with dectin-1-activated DCs induces potent antitumour response that depends on Th9 cells and IL-9 induced by dectin-1-activated DCs in vivo. Our results identify dectin-1-activated DCs as a powerful inducer of Th9 cells and antitumour immunity and may have important clinical implications.


Suppressing N-Acetyl-l-Aspartate Synthesis Prevents Loss of Neurons in a Murine Model of Canavan Leukodystrophy.

  • Jiho Sohn‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Canavan disease is a leukodystrophy caused by aspartoacylase (ASPA) deficiency. The lack of functional ASPA, an enzyme enriched in oligodendroglia that cleaves N-acetyl-l-aspartate (NAA) to acetate and l-aspartic acid, elevates brain NAA and causes "spongiform" vacuolation of superficial brain white matter and neighboring gray matter. In children with Canavan disease, neuroimaging shows early-onset dysmyelination and progressive brain atrophy. Neuron loss has been documented at autopsy in some cases. Prior studies have shown that mice homozygous for the Aspa nonsense mutation Nur7 also develop brain vacuolation. We now report that numbers of cerebral cortical and cerebellar neurons are decreased and that cerebral cortex progressively thins in AspaNur7/Nur7 mice. This neuronal pathology is prevented by constitutive disruption of Nat8l, which encodes the neuronal NAA-synthetic enzyme N-acetyltransferase-8-like.


Deletion of astroglial CXCL10 delays clinical onset but does not affect progressive axon loss in a murine autoimmune multiple sclerosis model.

  • Emily Mills Ko‎ et al.
  • Journal of neuroinflammation‎
  • 2014‎

Multiple sclerosis (MS) is characterized by central nervous system (CNS) inflammation, demyelination, and axonal degeneration. CXCL10 (IP-10), a chemokine for CXCR3+ T cells, is known to regulate T cell differentiation and migration in the periphery, but effects of CXCL10 produced endogenously in the CNS on immune cell trafficking are unknown. We created floxed cxcl10 mice and crossed them with mice carrying an astrocyte-specific Cre transgene (mGFAPcre) to ablate astroglial CXCL10 synthesis. These mice, and littermate controls, were immunized with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG peptide) to induce experimental autoimmune encephalomyelitis (EAE). In comparison to the control mice, spinal cord CXCL10 mRNA and protein were sharply diminished in the mGFAPcre/CXCL10fl/fl EAE mice, confirming that astroglia are chiefly responsible for EAE-induced CNS CXCL10 synthesis. Astroglial CXCL10 deletion did not significantly alter the overall composition of CD4+ lymphocytes and CD11b+ cells in the acutely inflamed CNS, but did diminish accumulation of CD4+ lymphocytes in the spinal cord perivascular spaces. Furthermore, IBA1+ microglia/macrophage accumulation within the lesions was not affected by CXCL10 deletion. Clinical deficits were milder and acute demyelination was substantially reduced in the astroglial CXCL10-deleted EAE mice, but long-term axon loss was equally severe in the two groups. We concluded that astroglial CXCL10 enhances spinal cord perivascular CD4+ lymphocyte accumulation and acute spinal cord demyelination in MOG peptide EAE, but does not play an important role in progressive axon loss in this MS model.


MiR-126 reverses drug resistance to TRAIL through inhibiting the expression of c-FLIP in cervical cancer.

  • Weijiang Zhang‎ et al.
  • Gene‎
  • 2017‎

TNF-related apoptosis-inducing ligand (TRAIL) represents one potential and ideal anti-tumor drug, because it kills cancer cells specifically without targeting normal cells. However, acquired drug resistance to TRAIL usually impedes the clinical use of TRAIL on cancer patients. In the present study, we established in vitro TRAIL-resistant cervical cancer cell lines through long-term exposure to TRAIL. Interestingly, we observed significant upregulation of c-FLIP in TRAIL-resistant Hela and SiHa cells (Hela-TR and SiHa-TR) compared to their parental Hela and SiHa cells. Although Hela-TR and SiHa-TR cells exhibited low-sensitivity to TRAIL treatment, knockdown of c-FLIP significantly increased the cytotoxicity of TRAIL to them. In contrast to high protein level of c-FLIP, expression of miR-126 was significantly downregulated in Hela-TR and SiHa-TR cells. Results of western blot analysis, luciferase assays and bioinformatics proved that c-FLIP was the target of miR-126. Furthermore, as c-FLIP is the cellular antagonist to caspase-8, transfection with miR-126 promoted the activation of caspase-8 induced by TRAIL. As a result, miR-126 increased the TRAIL-induced apoptosis in Hela-TR and SiHa-TR cells. In addition, miR-126 was also able to increase the cytotoxicity of TNF-α and FasL (caspase-8 inducers) to Hela-TR and SiHa-TR. We demonstrate that miR-126 impairs drug resistance to TRAIL, TNF-α and FasL through inhibiting the expression of c-FLIP in cervical cancer.


Genetically engineered mesenchymal stem cells with dopamine synthesis for Parkinson's disease in animal models.

  • Jun Li‎ et al.
  • NPJ Parkinson's disease‎
  • 2022‎

Although striatal delivery of three critical genes for dopamine synthesis by viruses is a potential clinical approach for treating Parkinson's disease (PD), the approach makes it difficult to finely control dopamine secretion amounts and brings safety concerns. Here, we generate genetically engineered mesenchymal stem cells encoding three critical genes for dopamine synthesis (DOPA-MSCs). DOPA-MSCs retain their MSC identity and stable ability to secrete dopamine during passaging. Following transplantation, DOPA-MSCs reinstate striatal dopamine levels and correct motor function in PD rats. Importantly, after grafting into the caudate and putamen, DOPA-MSCs provide homotopic reconstruction of midbrain dopamine pathways by restoring striatal dopamine levels, and safely and long-term (up to 51 months) correct motor disorders and nonmotor deficits in acute and chronic PD rhesus monkey models of PD even with advanced PD symptoms. The long-term benefits and safety results support the idea that the development of dopamine-synthesized engineered cell transplantation is an important strategy for treating PD.


Predicting potential distribution of the Rhinoncus sibiricus under climatic in China using MaxEnt.

  • Wanyou Liu‎ et al.
  • PloS one‎
  • 2024‎

In recent years, buckwheat (Fagopyrum spp.) is being increasingly damaged by the Siberian tortoise beetle (Rhinoncus sibiricus Faust). Adults and nymphs feed on leaf tissues and caulicles, thus damaging its stems and leaves. In this study, we investigated the habits, distribution, and environmental impact of R. sibiricus using MaxEnt, an ecological niche model. Geographic information about the infestation site from previous field surveys and climatic data from 2013 to 2018 were organized and optimized using R. The impact factors were calculated using MaxEnt software. The results indicate that population fluctuations in R. sibiricus are related to changes in temperature, humidity, and their spatial distribution. Under current climatic conditions, R. sibiricus is mainly distributed in northern China, with sporadic distribution in south-western China. The values for a survival probability threshold > 0.3 were: precipitation during the wettest month (bio13), 70.31-137.56 mm; mean temperature of the coldest quarter (bio11), -15.00-0.85°C; mean temperature of the warmest quarter (bio10), 11.88-23.16°C; precipitation during the coldest quarter (biol9), 0-24.39 mm. The main factors contributing > 70% to the models were precipitation during the wettest month and coldest quarter, and mean temperature during the warmest and coldest quarters. Under both future climate models, the center of the fitness zone moves northward. Our results will be useful in guiding administrative decisions and support farmers interested in establishing control and management strategies for R. sibiricus. This study could also serve as a reference for future research on other invasive pests.


Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE.

  • Monica Moreno‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2014‎

Current multiple sclerosis (MS) therapies only partially prevent chronically worsening neurological deficits, which are largely attributable to progressive loss of CNS axons. Prior studies of experimental autoimmune encephalomyelitis (EAE) induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG peptide), a model of MS, documented continued axon loss for months after acute CNS inflammatory infiltrates had subsided, and massive astroglial induction of CCL2 (MCP-1), a chemokine for CCR2(+) monocytes. We now report that conditional deletion of astroglial CCL2 significantly decreases CNS accumulation of classically activated (M1) monocyte-derived macrophages and microglial expression of M1 markers during the initial CNS inflammatory phase of MOG peptide EAE, reduces the acute and long-term severity of clinical deficits and slows the progression of spinal cord axon loss. In addition, lack of astroglial-derived CCL2 results in increased accumulation of Th17 cells within the CNS in these mice, but also in greater confinement of CD4(+) lymphocytes to CNS perivascular spaces. These findings suggest that therapies designed to inhibit astroglial CCL2-driven trafficking of monocyte-derived macrophages to the CNS during acute MS exacerbations have the potential to significantly reduce CNS axon loss and slow progression of neurological deficits.


ZPK/DLK, a mitogen-activated protein kinase kinase kinase, is a critical mediator of programmed cell death of motoneurons.

  • Aki Itoh‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2011‎

Activation of mitogen-activated protein kinase pathways is critically involved in naturally occurring programmed cell death of motoneurons during development, but the upstream mediators remain undetermined. We found that mice deficient in ZPK, also called DLK (ZPK/DLK), an upstream kinase in these pathways, have twice as many spinal motoneurons as do their wild-type littermates. Nuclear HB9/MNX1-positive motoneuron pools were generated similarly in the spinal cord of both ZPK/DLK-deficient and wild-type embryos. Thereafter, however, significantly less apoptotic motoneurons were found in ZPK/DLK-deficient embryos compared with wild-type embryos, resulting in retention of excess numbers of motoneurons after birth. Notably, these excess motoneurons remained viable without atrophic changes in the ZPK/DLK-deficient mice surviving into adulthood. Analysis of the diaphragm and the phrenic nerve revealed that clustering and innervation of neuromuscular junctions were indistinguishable between ZPK/DLK-deficient and wild-type mice, whereas the proximal portion of the phrenic nerve of ZPK/DLK-deficient mice contained significantly more axons than the distal portion. This result supports the hypothesis that some excess ZPK/DLK-deficient motoneurons survived without atrophy despite failure to establish axonal contact with their targets. This study provides compelling evidence for a critical role for ZPK/DLK in naturally occurring programmed cell death of motoneurons and suggests that ZPK/DLK could become a strategic therapeutic target in motor neuron diseases in which aberrant activation of the apoptogenic cascade is involved.


Mice Hemizygous for a Pathogenic Mitofusin-2 Allele Exhibit Hind Limb/Foot Gait Deficits and Phenotypic Perturbations in Nerve and Muscle.

  • Peter Bannerman‎ et al.
  • PloS one‎
  • 2016‎

Charcot-Marie-Tooth disease type 2A (CMT2A), the most common axonal form of hereditary sensory motor neuropathy, is caused by mutations of mitofusin-2 (MFN2). Mitofusin-2 is a GTPase required for fusion of mitochondrial outer membranes, repair of damaged mitochondria, efficient mitochondrial energetics, regulation of mitochondrial-endoplasmic reticulum calcium coupling and axonal transport of mitochondria. We knocked T105M MFN2 preceded by a loxP-flanked STOP sequence into the mouse Rosa26 locus to permit cell type-specific expression of this pathogenic allele. Crossing these mice with nestin-Cre transgenic mice elicited T105M MFN2 expression in neuroectoderm, and resulted in diminished numbers of mitochondria in peripheral nerve axons, an alteration in skeletal muscle fiber type distribution, and a gait abnormality.


An immune evasion mechanism with IgG4 playing an essential role in cancer and implication for immunotherapy.

  • Hui Wang‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2020‎

Recent impressive advances in cancer immunotherapy have been largely derived from cellular immunity. The role of humoral immunity in carcinogenesis has been less understood. Based on our previous observations we hypothesize that an immunoglobulin subtype IgG4 plays an essential role in cancer immune evasion.


AMPK-dependent activation of the Cyclin Y/CDK16 complex controls autophagy.

  • Marc Dohmen‎ et al.
  • Nature communications‎
  • 2020‎

The AMP-activated protein kinase (AMPK) is a master sensor of the cellular energy status that is crucial for the adaptive response to limited energy availability. AMPK is implicated in the regulation of many cellular processes, including autophagy. However, the precise mechanisms by which AMPK controls these processes and the identities of relevant substrates are not fully understood. Using protein microarrays, we identify Cyclin Y as an AMPK substrate that is phosphorylated at Serine 326 (S326) both in vitro and in cells. Phosphorylation of Cyclin Y at S326 promotes its interaction with the Cyclin-dependent kinase 16 (CDK16), thereby stimulating its catalytic activity. When expressed in cells, Cyclin Y/CDK16 is sufficient to promote autophagy. Moreover, Cyclin Y/CDK16 is necessary for efficient AMPK-dependent activation of autophagy. This functional interaction is mediated by AMPK phosphorylating S326 of Cyclin Y. Collectively, we define Cyclin Y/CDK16 as downstream effector of AMPK for inducing autophagy.


The Wnt Effector TCF7l2 Promotes Oligodendroglial Differentiation by Repressing Autocrine BMP4-Mediated Signaling.

  • Sheng Zhang‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2021‎

Promoting oligodendrocyte (OL) differentiation represents a promising option for remyelination therapy for treating the demyelinating disease multiple sclerosis (MS). The Wnt effector transcription factor 7-like 2 (TCF7l2) was upregulated in MS lesions and had been proposed to inhibit OL differentiation. Recent data suggest the opposite yet underlying mechanisms remain elusive. Here, we unravel a previously unappreciated function of TCF7l2 in controlling autocrine bone morphogenetic protein (BMP)4-mediated signaling. Disrupting TCF7l2 in mice of both sexes results in oligodendroglial-specific BMP4 upregulation and canonical BMP4 signaling activation in vivo Mechanistically, TCF7l2 binds to Bmp4 gene regulatory element and directly represses its transcriptional activity. Functionally, enforced TCF7l2 expression promotes OL differentiation by reducing autocrine BMP4 secretion and dampening BMP4 signaling. Importantly, compound genetic disruption demonstrates that oligodendroglial-specific BMP4 deletion rescues arrested OL differentiation elicited by TCF7l2 disruption in vivo Collectively, our study reveals a novel connection between TCF7l2 and BMP4 in oligodendroglial lineage and provides new insights into augmenting TCF7l2 for promoting remyelination in demyelinating disorders such as MS.SIGNIFICANCE STATEMENT Incomplete or failed myelin repairs, primarily resulting from the arrested differentiation of myelin-forming oligodendrocytes (OLs) from oligodendroglial progenitor cells, is one of the major reasons for neurologic progression in people affected by multiple sclerosis (MS). Using in vitro culture systems and in vivo animal models, this study unraveled a previously unrecognized autocrine regulation of bone morphogenetic protein (BMP)4-mediated signaling by the Wnt effector transcription factor 7-like 2 (TCF7l2). We showed for the first time that TCF7l2 promotes oligodendroglial differentiation by repressing BMP4-mediated activity, which is dysregulated in MS lesions. Our study suggests that elevating TCF7l2 expression may be possible in overcoming arrested oligodendroglial differentiation as observed in MS patients.


Dectin-1 signaling inhibits osteoclastogenesis via IL-33-induced inhibition of NFATc1.

  • Xiaoqing Zhu‎ et al.
  • Oncotarget‎
  • 2017‎

Abnormal osteoclast activation contributes to osteolytic bone diseases (OBDs). It was reported that curdlan, an agonist of dectin-1, inhibits osteoclastogenesis. However, the underlying mechanisms are not fully elucidated. In this study, we found that curdlan potently inhibited RANKL-induced osteoclast differentiation and the resultant bone resorption. Curdlan inhibited the expression of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), the key transcriptional factor for osteoclastogenesis. Notably, dectin-1 activation increased the expression of MafB, an inhibitor of NFATc1, and IL-33 in osteoclast precursors. Mechanistic studies revealed that IL-33 enhanced the expression of MafB in osteoclast precursors and inhibited osteoclast precursors to differentiate into mature osteoclasts. Furthermore, blocking ST2, the IL-33 receptor, partially abrogated curdlan-induced inhibition of NFATc1 expression and osteoclast differentiation. Thus, our study has provided new insights into the mechanisms of dectin-1-induced inhibition of osteoclastogenesis and may provide new targets for the therapy of OBDs.


Circular RNA circ_0090231 promotes atherosclerosis in vitro by enhancing NLR family pyrin domain containing 3-mediated pyroptosis of endothelial cells.

  • Yishan Ge‎ et al.
  • Bioengineered‎
  • 2021‎

Atherosclerosis (AS) is an inflammatory disease caused by multiple factors. Multiple circRNAs are involved in the development of AS. The present study focusses on delineating the role of circ_0090231 in AS. Human aortic endothelial cells (HAECs) were treated with oxidized low-density lipoprotein (ox-LDL) to construct an in vitro AS model. Real-time quantitative polymerase-chain reaction (RT-qPCR) was used to detect the levels of circ_0090231, IL-1β, and IL-18 transcripts. CircRNA/target gene interactions were predicted using StarBase and TargetScan and confirmed using an RNA pull-down assay and dual-luciferase reporter assay. Further, 3-(4,5)-dimethylthiahiazo(-2)-3,5-diphenytetrazoliumromide (MTT) and lactate dehydrogenase (LDH) release assays were performed to evaluate cell viability and damage in the AS model, respectively. Cell pyroptosis and protein expression were determined using flow cytometry and western blotting respectively. The treatment of HAECs with ox-LDL not only led to significant increase in the levels of circ_0090231 but also resulted in improved cell viability as well as reduced cell injury and pyroptosis as compared to that in non-treated cells. The circ_0090231 was also identified to function as a sponge for miR-635, knockdown of which reverses the effects of circ_0090231 inhibition. Furthermore, our results revealed that levels of NLRP3, a miR-635 target, are not only augmented in the AS model but its overexpression also weakens the miR-635 regulatory effects in the AS development. Taken together, the circ_0090231/miR-635/NLRP3 axis affects the development of AS by regulating cell pyroptosis, thus providing new insights into the mechanism of AS development.


Improving Cell Survival in Injected Embryos Allows Primed Pluripotent Stem Cells to Generate Chimeric Cynomolgus Monkeys.

  • Yu Kang‎ et al.
  • Cell reports‎
  • 2018‎

Monkeys are an optimal model species for developing stem cell therapies. We previously reported generating chimeric cynomolgus monkey fetuses using dome-shaped embryonic stem cells (dESCs). However, conventional primed pluripotent stem cells (pPSCs) lack chimera competency. Here, by altering the media in which injected morulae are cultured, we observed increased survival of cynomolgus monkey primed ESCs, induced PSCs, and somatic cell nuclear transfer-derived ESCs, thereby enabling chimeric contributions with 0.1%-4.5% chimerism into the embryonic and placental tissues, including germ cell progenitors in chimeric monkeys. Mechanically, dESCs and pPSCs belong to different cell types and similarly express epiblast ontogenic genes. The host embryonic microenvironment could reprogram injected PSCs to embryonic-like cells. However, the reprogramming level and chimerism were associated with the cell state of injected PSCs. Our findings provide a method to understand pluripotency and broaden the use of embryonic chimeras for basic developmental biology research and regenerative medicine.


ZPK/DLK and MKK4 form the critical gateway to axotomy-induced motoneuron death in neonates.

  • Takayuki Itoh‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2014‎

Motoneuron death after transection of the axons (axotomy) in neonates is believed to share the same mechanistic bases as naturally occurring programmed cell death during development. The c-Jun N-terminal kinase pathway is activated in both forms of motoneuron death, but it remains unknown to what extent these two forms of motoneuron death depend on this pathway and which upstream kinases are involved. We found that numbers of facial motoneurons are doubled in neonatal mice deficient in either ZPK/DLK (zipper protein kinase, also known as dual leucine zipper kinase), a mitogen-activated protein kinase kinase kinase, or in MKK4/MAP2K4, a mitogen-activated protein kinase kinase directly downstream of ZPK/DLK, and that the facial motoneurons in those mutant mice are completely resistant to axotomy-induced death. Conditional deletion of MKK4/MAP2K4 in neurons further suggested that ZPK/DLK and MKK4/MAP2K4-dependent mechanisms underlying axotomy-induced death are motoneuron autonomous. Nevertheless, quantitative analysis of facial motoneurons during embryogenesis revealed that both ZPK/DLK and MKK4/MAP2K4-dependent and -independent mechanisms contribute to developmental elimination of excess motoneurons. In contrast to MKK4/MAP2K4, mice lacking MKK7/MAP2K7, another mitogen-activated protein kinase kinase directly downstream of ZPK/DLK, conditionally in neurons did not have excess facial motoneurons. However, some MKK7/MAP2K7-deficient facial motoneurons were resistant to axotomy-induced death, indicating a synergistic effect of MKK7/MAP2K7 on axotomy-induced death of these facial motoneurons. Together, our study provides compelling evidence for the pivotal roles of the ZPK/DLK and MKK4/MAP2K4-dependent mechanism in axotomy-induced motoneuron death in neonates and also demonstrates that axotomy-induced motoneuron death is not identical to developmental motoneuron death with respect to the involvement of ZPK/DLK, MKK4/MAP2K4 and MKK7/MAP2K7.


Brain Nat8l Knockdown Suppresses Spongiform Leukodystrophy in an Aspartoacylase-Deficient Canavan Disease Mouse Model.

  • Peter Bannerman‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2018‎

Canavan disease, a leukodystrophy caused by loss-of-function ASPA mutations, is characterized by brain dysmyelination, vacuolation, and astrogliosis ("spongiform leukodystrophy"). ASPA encodes aspartoacylase, an oligodendroglial enzyme that cleaves the abundant brain amino acid N-acetyl-L-aspartate (NAA) to L-aspartate and acetate. Aspartoacylase deficiency results in a 50% or greater elevation in brain NAA concentration ([NAAB]). Prior studies showed that homozygous constitutive knockout of Nat8l, the gene encoding the neuronal NAA synthesizing enzyme N-acetyltransferase 8-like, prevents aspartoacylase-deficient mice from developing spongiform leukodystrophy. We now report that brain Nat8l knockdown elicited by intracerebroventricular/intracisternal administration of an adeno-associated viral vector carrying a short hairpin Nat8l inhibitory RNA to neonatal aspartoacylase-deficient AspaNur7/Nur7 mice lowers [NAAB] and suppresses development of spongiform leukodystrophy.


Pharmacokinetic herb-drug interactions between Aidi injection and doxorubicin in rats with diethylnitrosamine-induced hepatocellular carcinoma.

  • Yuan Lu‎ et al.
  • BMC pharmacology & toxicology‎
  • 2021‎

Aidi Injection (ADI), a Chinese herbal preparation with anti-cancer activity, is used for the treatment of hepatocellular carcinoma (HCC). Several clinical studies have shown that co-administration of ADI with doxorubicin (DOX) is associated with reduced toxicity of chemotherapy, enhanced clinical efficacy and improved quality of life for patients. However, limited information is available about the herb-drug interactions between ADI and DOX. The study aimed to investigate the pharmacokinetic mechanism of herb-drug interactions between ADI and DOX in a rat model of HCC.


Single-cell analysis reveals lysyl oxidase (Lox)+ fibroblast subset involved in cardiac fibrosis of diabetic mice.

  • Heyangzi Li‎ et al.
  • Journal of advanced research‎
  • 2023‎

Myocardial fibrosis and cardiac dysfunction are the main characteristics of diabetic heart disease. However, the molecular mechanisms underlying diabetic myocardial fibrosis remain unclear.


CX3CR1 is a potential biomarker of immune microenvironment and prognosis in epithelial ovarian cancer.

  • Danfeng Shao‎ et al.
  • Medicine‎
  • 2024‎

Immunotherapy is less efficient for epithelial ovarian cancer and lacks ideal biomarkers to select the best beneficiaries for immunotherapy. CX3CR1 as chemokine receptor mainly expressed on immune cell membranes, and combined with its unique ligand CX3CL1, mediates tissue chemotaxis and adhesion of immune cells. However, the immune functional and prognostic value of CX3CR1 in epithelial ovarian cancer has not been clarified. A comprehensive retrospective analysis was performed by using the online database to identify the underlying immunological mechanisms and prognostic value of CX3CR1. The Human Protein Atlas, gene expression profiling interactive analysis, and TISIDB (an integrated repository portal for tumor-immune system interactions) database showed that CX3CR1 expressed higher in epithelial ovarian cancer than that in normal ovarian tissue. Four hundred twenty-two cases from Gene Expression Profiling Interactive Analysis and 1656 cases from Kaplan-Meier plotter database showed higher expression of CX3CR1 (above median) was associated with unfavorable overall survival. TIMER, UALCAN, and TISIDB database were applied to validate CX3CR1 negative impact on overall survival. In addition, correlation analysis showed that the expression level of CX3CR1 was positive association with infiltrating levels of B cells (R = 0.31, P = 3.10e-12), CD8+ T cells (R = 0.26, P = 7.93e-09), CD4+ T cells (R = 0.11, P = 1.41e-02), macrophages (R = 0.32, P = 4.29e-13), dendritic cells (R = 0.27, P = 2.98e-09), and neutrophil (R = 0.25, P = 3.25e-08) in epithelial ovarian cancer. Therefore, CX3CR1 involved in reshaping the immune microenvironment for epithelial ovarian cancer and maybe a potential immunotherapy target and prognostic marker for ovarian cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: