Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

MicroRNA-770 affects proliferation and cell cycle transition by directly targeting CDK8 in glioma.

  • Jun-Feng Zhang‎ et al.
  • Cancer cell international‎
  • 2018‎

MicroRNAs play crucial roles in tumorigenesis and tumor progression. miR-770 has been reported to be downregulated in several cancers and affects cancer cell proliferation, apoptosis, metastasis and drug resistance. However, the role and underlying molecular mechanism of miR-770 in human glioma remain unknown and need to be further elucidated.


The orphan receptor TR3 participates in angiotensin II-induced cardiac hypertrophy by controlling mTOR signalling.

  • Rong-Hao Wang‎ et al.
  • EMBO molecular medicine‎
  • 2013‎

Angiotensin II (AngII) induces cardiac hypertrophy and increases the expression of TR3. To determine whether TR3 is involved in the regulation of the pathological cardiac hypertrophy induced by AngII, we established mouse and rat hypertrophy models using chronic AngII administration. Our results reveal that a deficiency of TR3 in mice or the knockdown of TR3 in the left ventricle of rats attenuated AngII-induced cardiac hypertrophy compared with the respective controls. A mechanistic analysis demonstrates that the TR3-mediated activation of mTORC1 is associated with AngII-induced cardiac hypertrophy. TR3 was shown to form a trimer with the TSC1/TSC2 complex that specifically promoted TSC2 degradation via a proteasome/ubiquitination pathway. As a result, mTORC1, but not mTORC2, was activated; this was accompanied by increased protein synthesis, enhanced production of reactive oxygen species and enlarged cell size, thereby resulting in cardiac hypertrophy. This study demonstrates that TR3 positively regulates cardiac hypertrophy by influencing the effect of AngII on the mTOR pathway. The elimination or reduction of TR3 may reduce cardiac hypertrophy; therefore, TR3 is a potential target for clinical therapy.


Nur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation.

  • Xue-Li Bian‎ et al.
  • Nature communications‎
  • 2017‎

Gluconeogenesis, an essential metabolic process for hepatocytes, is downregulated in hepatocellular carcinoma (HCC). Here we show that the nuclear receptor Nur77 is a tumour suppressor for HCC that regulates gluconeogenesis. Low Nur77 expression in clinical HCC samples correlates with poor prognosis, and a Nur77 deficiency in mice promotes HCC development. Nur77 interacts with phosphoenolpyruvate carboxykinase (PEPCK1), the rate-limiting enzyme in gluconeogenesis, to increase gluconeogenesis and suppress glycolysis, resulting in ATP depletion and cell growth arrest. However, PEPCK1 becomes labile after sumoylation and is degraded via ubiquitination, which is augmented by the p300 acetylation of ubiquitin-conjugating enzyme 9 (Ubc9). Although Nur77 attenuates sumoylation and stabilizes PEPCK1 via impairing p300 activity and preventing the Ubc9-PEPCK1 interaction, Nur77 is silenced in HCC samples due to Snail-mediated DNA methylation of the Nur77 promoter. Our study reveals a unique mechanism to suppress HCC by switching from glycolysis to gluconeogenesis through Nur77 antagonism of PEPCK1 degradation.


Clinical and genomic features in patients with second primary glioblastoma following first primary renal cell carcinoma.

  • Guang-Tao Zhang‎ et al.
  • BMC cancer‎
  • 2023‎

To explore the potential pathogenesis and clinical features of second primary glioblastoma (spGBM) following first primary renal cell carcinoma (fpRCC).


Deep Learning Promotes the Screening of Natural Products with Potential Microtubule Inhibition Activity.

  • Xiao-Nan Jia‎ et al.
  • ACS omega‎
  • 2022‎

Natural microtubule inhibitors, such as paclitaxel and ixabepilone, are key sources of novel medications, which have a considerable influence on anti-tumor chemotherapy. Natural product chemists have been encouraged to create novel methodologies for screening the new generation of microtubule inhibitors from the enormous natural product library. There have been major advancements in the use of artificial intelligence in medication discovery recently. Deep learning algorithms, in particular, have shown promise in terms of swiftly screening effective leads from huge compound libraries and producing novel compounds with desirable features. We used a deep neural network to search for potent β-microtubule inhibitors in natural goods. Eleutherobin, bruceine D (BD), and phorbol 12-myristate 13-acetate (PMA) are three highly effective natural compounds that have been found as β-microtubule inhibitors. In conclusion, this paper describes the use of deep learning to screen for effective β-microtubule inhibitors. This research also demonstrates the promising possibility of employing deep learning to develop drugs from natural products for a wider range of disorders.


Thymosin β4 reverses phenotypic polarization of glial cells and cognitive impairment via negative regulation of NF-κB signaling axis in APP/PS1 mice.

  • Meng Wang‎ et al.
  • Journal of neuroinflammation‎
  • 2021‎

Thymosin β4 (Tβ4) is the most abundant member of the β-thymosins and plays an important role in the control of actin polymerization in eukaryotic cells. While its effects in multiple organs and diseases are being widely investigated, the safety profile has been established in animals and humans, currently, little is known about its influence on Alzheimer's disease (AD) and the possible mechanisms. Thus, we aimed to evaluate the effects and mechanisms of Tβ4 on glial polarization and cognitive performance in APP/PS1 transgenic mice.


The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8.

  • Jia-Yuan Zhang‎ et al.
  • Cell research‎
  • 2021‎

Pyroptosis is a form of regulated cell death mediated by gasdermin family members, among which the function of GSDMC has not been clearly described. Herein, we demonstrate that the metabolite α-ketoglutarate (α-KG) induces pyroptosis through caspase-8-mediated cleavage of GSDMC. Treatment with DM-αKG, a cell-permeable derivative of α-KG, elevates ROS levels, which leads to oxidation of the plasma membrane-localized death receptor DR6. Oxidation of DR6 triggers its endocytosis, and then recruits both pro-caspase-8 and GSDMC to a DR6 receptosome through protein-protein interactions. The DR6 receptosome herein provides a platform for the cleavage of GSDMC by active caspase-8, thereby leading to pyroptosis. Moreover, this α-KG-induced pyroptosis could inhibit tumor growth and metastasis in mouse models. Interestingly, the efficiency of α-KG in inducing pyroptosis relies on an acidic environment in which α-KG is reduced by MDH1 and converted to L-2HG that further boosts ROS levels. Treatment with lactic acid, the end product of glycolysis, builds an improved acidic environment to facilitate more production of L-2HG, which makes the originally pyroptosis-resistant cancer cells more susceptible to α-KG-induced pyroptosis. This study not only illustrates a pyroptotic pathway linked with metabolites but also identifies an unreported principal axis extending from ROS-initiated DR6 endocytosis to caspase-8-mediated cleavage of GSDMC for potential clinical application in tumor therapy.


Advance care planning for frail elderly: are we missing a golden opportunity? A mixed-method systematic review and meta-analysis.

  • Xinying Wang‎ et al.
  • BMJ open‎
  • 2023‎

The aim is to integrate quantitative and qualitative evidence to understand the effectiveness and experience of advance care planning (ACP) for frail elderly.


Therapeutic potency of compound RMY-205 for pulmonary fibrosis induced by SARS-CoV-2 nucleocapsid protein.

  • Zhi-Yuan Zhang‎ et al.
  • Cell chemical biology‎
  • 2023‎

Pulmonary fibrosis is a typical sequela of coronavirus disease 2019 (COVID-19), which is linked with a poor prognosis for COVID-19 patients. However, the underlying mechanism of pulmonary fibrosis induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Here, we demonstrated that the nucleocapsid (N) protein of SARS-CoV-2 induced pulmonary fibrosis by activating pulmonary fibroblasts. N protein interacted with the transforming growth factor β receptor I (TβRI), to disrupt the interaction of TβRI-FK506 Binding Protein12 (FKBP12), which led to activation of TβRI to phosphorylate Smad3 and boost expression of pro-fibrotic genes and secretion of cytokines to promote pulmonary fibrosis. Furthermore, we identified a compound, RMY-205, that bound to Smad3 to disrupt TβRI-induced Smad3 activation. The therapeutic potential of RMY-205 was strengthened in mouse models of N protein-induced pulmonary fibrosis. This study highlights a signaling pathway of pulmonary fibrosis induced by N protein and demonstrates a novel therapeutic strategy for treating pulmonary fibrosis by a compound targeting Smad3.


Status epilepticus induced Gadd45b is required for augmented dentate neurogenesis.

  • Xin-Li Xiao‎ et al.
  • Stem cell research‎
  • 2020‎

In animal models with temporal lobe epilepsy (TLE), the status epilepticus (SE) leads to a dramatic increase in number of newly born neuron in the subgranular zone (SGZ) of dentate gyrus. How the SE confers a modulation in the dentate neurogenesis is mostly unknown. Gadd45b is involved in epigenetic gene activation by DNA demethylation. This study was performed to present a novel mechanism underling SE-induced dentate neurogenesis. A transient induction (12 hrs to 3 days) of Gadd45b was observed in dentate gyrus of mice after pilocarpine-induced SE. Labeling the dividing cells with BrdU, we next found that the induction of Gadd45b was required to increase the rate of cell proliferation in the dentate gyrus at 7 and 14 days after SE. Afterward, the DNA methylation levels for candidate growth factor genes critical for the adult neurogenesis were assayed with Sequenom MassARRAY Analyzer. The results indicated that Gadd45b was necessary for SE-induced DNA demethylation of specific promoters and expression of corresponding genes in the dentate gyrus, including brain-derived neurotrophic factor (BDNF) and fibroblast growth factor-2 (FGF-2). Using Timm staining, we further suggested that SE-induced Gadd45b might contribute to the subsequent mossy fiber sprouting (MFS) in the chronically epileptic hippocampus via epigenetic regulation of dentate neurogenesis at early stage after SE. Together, Gadd45b links pilocarpine-induced SE to epigenetic DNA modification of secreted factors in the dentate gyrus, leading to extrinsic modulation on the neurogenesis.


DKK2 imparts tumor immunity evasion through β-catenin-independent suppression of cytotoxic immune-cell activation.

  • Qian Xiao‎ et al.
  • Nature medicine‎
  • 2018‎

Immunotherapy offers new options for cancer treatment, but efficacy varies across cancer types. Colorectal cancers (CRCs) are largely refractory to immune-checkpoint blockade, which suggests the presence of yet uncharacterized immune-suppressive mechanisms. Here we report that the loss of adenomatosis polyposis coli (APC) in intestinal tumor cells or of the tumor suppressor PTEN in melanoma cells upregulates the expression of Dickkopf-related protein 2 (DKK2), which, together with its receptor LRP5, provides an unconventional mechanism for tumor immune evasion. DKK2 secreted by tumor cells acts on cytotoxic lymphocytes, inhibiting STAT5 signaling by impeding STAT5 nuclear localization via LRP5, but independently of LRP6 and the Wnt-β-catenin pathway. Genetic or antibody-mediated ablation of DKK2 activates natural killer (NK) cells and CD8+ T cells in tumors, impedes tumor progression, and enhances the effects of PD-1 blockade. Thus, we have identified a previously unknown tumor immune-suppressive mechanism and immunotherapeutic targets particularly relevant for CRCs and a subset of melanomas.


Mannose antagonizes GSDME-mediated pyroptosis through AMPK activated by metabolite GlcNAc-6P.

  • Yuan-Li Ai‎ et al.
  • Cell research‎
  • 2023‎

Pyroptosis is a type of regulated cell death executed by gasdermin family members. However, how gasdermin-mediated pyroptosis is negatively regulated remains unclear. Here, we demonstrate that mannose, a hexose, inhibits GSDME-mediated pyroptosis by activating AMP-activated protein kinase (AMPK). Mechanistically, mannose metabolism in the hexosamine biosynthetic pathway increases levels of the metabolite N-acetylglucosamine-6-phosphate (GlcNAc-6P), which binds AMPK to facilitate AMPK phosphorylation by LKB1. Activated AMPK then phosphorylates GSDME at Thr6, which leads to blockade of caspase-3-induced GSDME cleavage, thereby repressing pyroptosis. The regulatory role of AMPK-mediated GSDME phosphorylation was further confirmed in AMPK knockout and GSDMET6E or GSDMET6A knock-in mice. In mouse primary cancer models, mannose administration suppressed pyroptosis in small intestine and kidney to alleviate cisplatin- or oxaliplatin-induced tissue toxicity without impairing antitumor effects. The protective effect of mannose was also verified in a small group of patients with gastrointestinal cancer who received normal chemotherapy. Our study reveals a novel mechanism whereby mannose antagonizes GSDME-mediated pyroptosis through GlcNAc-6P-mediated activation of AMPK, and suggests the utility of mannose supplementation in alleviating chemotherapy-induced side effects in clinic applications.


HSDL2 Promotes Bladder Cancer Growth In Vitro and In Vivo.

  • Ling-Hua Jia‎ et al.
  • International journal of medical sciences‎
  • 2019‎

Bladder cancer is a common malignant urinary tumor, and patients with bladder cancer have poor prognosis. Abnormal lipid metabolism in peroxisomes is involved in tumor progression. Hydroxysteroid dehydrogenase-like 2 (HSDL2) localized in peroxisomes regulates fatty acid synthesis. In the present study, we reported that HSDL2 was upregulated in two human bladder cancer cell lines 5637 and T24 compared to normal human urothelial cells. Furthermore, lentiviral-mediated HSDL2 knockdown inhibited the proliferation and colony formation while promoted the apoptosis of human bladder cancer T24 cells in vitro. In nude mice HSDL2 knockdown inhibited the growth of T24 derived xenografts in vivo. In conclusion, our results suggest that HSDL2 plays an oncogenic role in bladder cancer and might serve as a potential target for bladder cancer therapy.


Overexpression of AMPD2 indicates poor prognosis in colorectal cancer patients via the Notch3 signaling pathway.

  • Qi-Zhong Gao‎ et al.
  • World journal of clinical cases‎
  • 2020‎

AMPD2 is a critical enzyme catalyzing smooth muscle energy supply and metabolism; however, its cellular biological function and clinical implication in colorectal cancer (CRC) are largely unknown.


The neurotoxic effect of isoflurane on age-defined neurons generated from tertiary dentate matrix in mice.

  • Xin-Li Xiao‎ et al.
  • Brain and behavior‎
  • 2021‎

Recent animal studies showed that isoflurane exposure may lead to the disturbance of hippocampal neurogenesis and later cognitive impairment. However, much less is known about the effect of isoflurane exposure on the neurons generated form tertiary dentate matrix, even though a great increase of granule cell population during the infantile period is principally derived from this area.


Rab31 promotes metastasis and cisplatin resistance in stomach adenocarcinoma through Twist1-mediated EMT.

  • Ke Chen‎ et al.
  • Cell death & disease‎
  • 2023‎

Stomach adenocarcinoma (STAD) is one of the leading causes of cancer-related death globally. Metastasis and drug resistance are two major causes of failures in current chemotherapy. Here, we found that the expression of Ras-related protein 31 (Rab31) is upregulated in human STAD tissues and high expression of Rab31 is closely associated with poor survival time. Furthermore, we revealed that Rab31 promotes cisplatin resistance and metastasis in human STAD cells. Reduced Rab31 expression induces tumor cell apoptosis and increases cisplatin sensitivity in STAD cells; Rab31 overexpression yielded the opposite result. Rab31 silencing prevented STAD cell migration, whereas the overexpression of Rab31 increased the metastatic potential. Further work showed that Rab31 mediates cisplatin resistance and metastasis via epithelial-mesenchymal transition (EMT) pathway. In addition, we found that both Rab31 overexpression and cisplatin treatment results in increased Twist1 expression. Depletion of Twist1 enhances sensitivity to cisplatin in STAD cells, which cannot be fully reversed by Rab31 overexpression. Rab31 could activate Twist1 by activating Stat3 and inhibiting Mucin 1 (MUC-1). The present study also demonstrates that Rab31 knockdown inhibited tumor growth in mice STAD models. These findings indicate that Rab31 is a novel and promising biomarker and potential therapeutic target for diagnosis, treatment and prognosis prediction in STAD patients. Our data not only identifies a novel Rab31/Stat3/MUC-1/Twist1/EMT pathway in STAD metastasis and drug resistance, but it also provides direction for the exploration of novel strategies to predict and treat STAD in the future.


Sex-related differences in the efficacy of immune checkpoint inhibitors in malignancy: a systematic review and meta-analysis.

  • Li-Ting Lai‎ et al.
  • Aging‎
  • 2021‎

Although disease susceptibility is known to differ between men and women, it is controversial whether the efficacy of immune checkpoint inhibitors for malignancies also differs between the sexes. We conducted a meta-analysis to explore the impact of sex on immune checkpoint inhibitor treatment outcomes. We searched PubMed, Embase and the Cochrane Library databases from inception to October 1, 2020 for randomized controlled trials of immune checkpoint inhibitors with hazard ratios (HRs) stratified by sex. We calculated the pooled HRs for men and women using the ln(HR), and assessed the heterogeneity between the two estimates through an interaction test. In total, 22,268 patients from 39 randomized controlled trials were included. Immune checkpoint inhibitors yielded better overall survival than conventional agents in both men (HR: 0.75, 95% confidence interval [CI]: 0.71-0.80) and women (HR: 0.77, 95% CI: 0.70-0.85). Progression-free survival benefits were also observed in both men (HR: 0.64, 95% CI: 0.58-0.70) and women (HR: 0.67, 95% CI: 0.58-0.77) treated with immune checkpoint inhibitors. No sex differences in the response to immune checkpoint inhibitors were found when overall survival and progression-free survival were used as the endpoints.


Establishing artificial gene connections through RNA displacement-assembly-controlled CRISPR/Cas9 function.

  • Wei-Jia Wang‎ et al.
  • Nucleic acids research‎
  • 2023‎

Construction of synthetic circuits that can reprogram genetic networks and signal pathways is a long-term goal for manipulation of biosystems. However, it is still highly challenging to build artificial genetic communications among endogenous RNA species due to their sequence independence and structural diversities. Here we report an RNA-based synthetic circuit that can establish regulatory linkages between expression of endogenous genes in both Escherichiacoli and mammalian cells. This design employs a displacement-assembly approach to modulate the activity of guide RNA for function control of CRISPR/Cas9. Our experiments demonstrate the great effectiveness of this RNA circuit for building artificial connections between expression of originally unrelated genes. Both exogenous and naturally occurring RNAs, including small/microRNAs and long mRNAs, are capable of controlling expression of another endogenous gene through this approach. Moreover, an artificial signal pathway inside mammalian cells is also successfully established to control cell apoptosis through our designed synthetic circuit. This study provides a general strategy for constructing synthetic RNA circuits, which can introduce artificial connections into the genetic networks of mammalian cells and alter the cellular phenotypes.


Nuclear Receptor Nur77 Facilitates Melanoma Cell Survival under Metabolic Stress by Protecting Fatty Acid Oxidation.

  • Xiao-Xue Li‎ et al.
  • Molecular cell‎
  • 2018‎

Fatty acid oxidation (FAO) is crucial for cells to overcome metabolic stress by providing ATP and NADPH. However, the mechanism by which FAO is regulated in tumors remains elusive. Here we show that Nur77 is required for the metabolic adaptation of melanoma cells by protecting FAO. Glucose deprivation activates ERK2 to phosphorylate and induce Nur77 translocation to the mitochondria, where Nur77 binds to TPβ, a rate-limiting enzyme in FAO. Although TPβ activity is normally inhibited by oxidation under glucose deprivation, the Nur77-TPβ association results in Nur77 self-sacrifice to protect TPβ from oxidation. FAO is therefore able to maintain NADPH and ATP levels and prevent ROS increase and cell death. The Nur77-TPβ interaction further promotes melanoma metastasis by facilitating circulating melanoma cell survival. This study demonstrates a novel regulatory function of Nur77 with linkage of the FAO-NADPH-ROS pathway during metabolic stress, suggesting Nur77 as a potential therapeutic target in melanoma.


HK1 from hepatic stellate cell-derived extracellular vesicles promotes progression of hepatocellular carcinoma.

  • Qi-Tao Chen‎ et al.
  • Nature metabolism‎
  • 2022‎

Extracellular vesicles play crucial roles in intercellular communication in the tumor microenvironment. Here we demonstrate that in hepatic fibrosis, TGF-β stimulates the palmitoylation of hexokinase 1 (HK1) in hepatic stellate cells (HSCs), which facilitates the secretion of HK1 via large extracellular vesicles in a TSG101-dependent manner. The large extracellular vesicle HK1 is hijacked by hepatocellular carcinoma (HCC) cells, leading to accelerated glycolysis and HCC progression. In HSCs, the nuclear receptor Nur77 transcriptionally activates the expression of depalmitoylase ABHD17B to inhibit HK1 palmitoylation, consequently attenuating HK1 release. However, TGF-β-activated Akt functionally represses Nur77 by inducing Nur77 phosphorylation and degradation. We identify the small molecule PDNPA that binds Nur77 to generate steric hindrance to block Akt targeting, thereby disrupting Akt-mediated Nur77 degradation and preserving Nur77 inhibition of HK1 release. Together, this study demonstrates an overlooked function of HK1 in HCC upon its release from HSCs and highlights PDNPA as a candidate compound for inhibiting HCC progression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: