Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 269 papers

LSD1 co-repressor Rcor2 orchestrates neurogenesis in the developing mouse brain.

  • Yixuan Wang‎ et al.
  • Nature communications‎
  • 2016‎

Epigenetic regulatory complexes play key roles in the modulation of transcriptional regulation underlying neural stem cell (NSC) proliferation and progeny specification. How specific cofactors guide histone demethylase LSD1/KDM1A complex to regulate distinct NSC-related gene activation and repression in cortical neurogenesis remains unclear. Here we demonstrate that Rcor2, a co-repressor of LSD1, is mainly expressed in the central nervous system (CNS) and plays a key role in epigenetic regulation of cortical development. Depletion of Rcor2 results in reduced NPC proliferation, neuron population, neocortex thickness and brain size. We find that Rcor2 directly targets Dlx2 and Shh, and represses their expressions in developing neocortex. In addition, inhibition of Shh signals rescues the neurogenesis defects caused by Rcor2 depletion both in vivo and in vitro. Hence, our findings suggest that co-repressor Rcor2 is critical for cortical development by repressing Shh signalling pathway in dorsal telencephalon.


Epidemiological and Phylogenetic Characteristics of Influenza B Infection in Severe Acute Respiratory Infection Cases in Beijing, 2014 to 2015.

  • Yang Pan‎ et al.
  • Medicine‎
  • 2015‎

Influenza B viral infection is of great importance, but the epidemiological and phylogenetic characteristics of influenza B infection in severe acute respiratory infection (SARI) cases are still unclear.The clinical information of 2816 SARI cases and 467,737 influenza-like illness (ILI) cases in Beijing area from September 2014 to April 2015 were collected and analyzed. Among them, 91 influenza B viruses isolated from SARI cases were sequenced.The overall yield rate of influenza A/B infection was 14.21% and 27.77% in sampled SARI and ILI cases, respectively. Compared with influenza A infection, the frequency of influenza B infection in SARI cases was higher in younger patients. Phylogenetic analysis suggested that most tested hemagglutination genes belonged to Yamagata lineage Clade 3, which were similar with current circulating viruses but different with 2014 to 2015 influenza season vaccine strain (Clade 2). Importantly, HA-Y3/NA-V4 intralineage reassorting was identified in Beijing area for the first time, which can act as a possible risk factor of SARIs.The influenza activity and virus types/subtypes/lineages among SARI patients were well correlated with that of ILI cases. Furthermore, the potential risk of reassorted influenza B virus infection should not be overlooked.


Discovery of novel INK4C small-molecule inhibitors to promote human and murine hematopoietic stem cell ex vivo expansion.

  • Xiang-Qun Xie‎ et al.
  • Scientific reports‎
  • 2015‎

Hematopoietic stem cells (HSCs) have emerged as promising therapeutic cell sources for high-risk hematological malignancies and immune disorders. However, their clinical use is limited by the inability to expand these cells ex vivo. Therefore, there is an urgent need to identify specific targets and effective probes that can expand HSCs. Here we report a novel class of INK4C (p18(INK4C) or p18) small molecule inhibitors (p18SMIs), which were initially found by in silico 3D screening. We identified a lead p18 inhibitor, XIE18-6, confirmed its p18-targeting specificity and bioactivity of promoting HSCs expansion, and then performed structure-activity relationship (SAR) studies by synthesizing a series of analogs of XIE18-6. Among these, compound 40 showed the most potent bioactivity in HSCs expansion (ED50 = 5.21 nM). We confirmed that compound 40 promoted expansion of both murine and human HSCs, and also confirmed its p18-targeting specificity. Notably, compound 40 did not show significant cytotoxicity toward 32D cells or HSCs, nor did it augment leukemia cell proliferation. Taken together, our newly discovered p18SMIs represent novel chemical agents for murine and human HSCs ex vivo expansion and also can be used as valuable chemical probes for further HSC biology research towards promising utility for therapeutic purposes.


Acetylation modification regulates GRP78 secretion in colon cancer cells.

  • Zongwei Li‎ et al.
  • Scientific reports‎
  • 2016‎

High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid tumour cells, participating in cell-cell communication in the tumour microenvironment. However, the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6 activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class III phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies (MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633, one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78 secretion and may also provide implications for the therapeutic use of HDAC inhibitors.


Supporting Regularized Logistic Regression Privately and Efficiently.

  • Wenfa Li‎ et al.
  • PloS one‎
  • 2016‎

As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.


Positive-unlabeled learning for disease gene identification.

  • Peng Yang‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2012‎

Identifying disease genes from human genome is an important but challenging task in biomedical research. Machine learning methods can be applied to discover new disease genes based on the known ones. Existing machine learning methods typically use the known disease genes as the positive training set P and the unknown genes as the negative training set N (non-disease gene set does not exist) to build classifiers to identify new disease genes from the unknown genes. However, such kind of classifiers is actually built from a noisy negative set N as there can be unknown disease genes in N itself. As a result, the classifiers do not perform as well as they could be.


Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies.

  • Randeep Kaur‎ et al.
  • International journal of nanomedicine‎
  • 2012‎

Detonation nanodiamonds (NDs) are carbon-based nanomaterials that, because of their size (4-5 nm), stable inert core, alterable surface chemistry, fluorescence, and biocompatibility, are emerging as bioimaging agents and promising tools for the delivery of biochemical molecules into cellular systems. However, diamond particles possess a strong propensity to aggregate in liquid formulation media, restricting their applicability in biomedical sciences. Here, the authors describe the covalent functionalization of NDs with lysine in an attempt to develop nanoparticles able to act as suitable nonviral vectors for transferring genetic materials across cellular membranes.


Effects of Fentanyl on Emergence Agitation in Children under Sevoflurane Anesthesia: Meta-Analysis of Randomized Controlled Trials.

  • Fenmei Shi‎ et al.
  • PloS one‎
  • 2015‎

The goal of this meta-analysis study was to assess the effects of fentanyl on emergence agitation (EA) under sevoflurane anesthesia in children.


Prophage recombinases-mediated genome engineering in Lactobacillus plantarum.

  • Peng Yang‎ et al.
  • Microbial cell factories‎
  • 2015‎

Lactobacillus plantarum is a food-grade microorganism with industrial and medical relevance belonging to the group of lactic acid bacteria (LAB). Traditional strategies for obtaining gene deletion variants in this organism are mainly vector-based double-crossover methods, which are inefficient and laborious. A feasible possibility to solve this problem is the recombineering, which greatly expands the possibilities for engineering DNA molecules in vivo in various organisms.


Discoidin domain receptor 1 contributes to tumorigenesis through modulation of TGFBI expression.

  • Nandini Rudra-Ganguly‎ et al.
  • PloS one‎
  • 2014‎

Discoidin domain receptor 1 (DDR1) is a member of the receptor tyrosine kinase family. The receptor is activated upon binding to its ligand, collagen, and plays a crucial role in many fundamental processes such as cell differentiation, adhesion, migration and invasion. Although DDR1 is expressed in many normal tissues, upregulated expression of DDR1 in a variety of human cancers such as lung, colon and brain cancers is known to be associated with poor prognosis. Using shRNA silencing, we assessed the oncogenic potential of DDR1. DDR1 knockdown impaired tumor cell proliferation and migration in vitro and tumor growth in vivo. Microarray analysis of tumor cells demonstrated upregulation of TGFBI expression upon DDR1 knockdown, which was subsequently confirmed at the protein level. TGFBI is a TGFβ-induced extracellular matrix protein secreted by the tumor cells and is known to act either as a tumor promoter or tumor suppressor, depending on the tumor environment. Here, we show that exogenous addition of recombinant TGFBI to BXPC3 tumor cells inhibited clonogenic growth and migration, thus recapitulating the phenotypic effect observed from DDR1 silencing. BXPC3 tumor xenografts demonstrated reduced growth with DDR1 knockdown, and the same xenograft tumors exhibited an increase in TGFBI expression level. Together, these data suggest that DDR1 expression level influences tumor growth in part via modulation of TGFBI expression. The reciprocal expression of DDR1 and TGFBI may help to elucidate the contribution of DDR1 in tumorigenesis and TGFBI may also be used as a biomarker for the therapeutic development of DDR1 specific inhibitors.


Transcriptome sequencing and de novo analysis of cytoplasmic male sterility and maintenance in JA-CMS cotton.

  • Peng Yang‎ et al.
  • PloS one‎
  • 2014‎

Cytoplasmic male sterility (CMS) is the failure to produce functional pollen, which is inherited maternally. And it is known that anther development is modulated through complicated interactions between nuclear and mitochondrial genes in sporophytic and gametophytic tissues. However, an unbiased transcriptome sequencing analysis of CMS in cotton is currently lacking in the literature. This study compared differentially expressed (DE) genes of floral buds at the sporogenous cells stage (SS) and microsporocyte stage (MS) (the two most important stages for pollen abortion in JA-CMS) between JA-CMS and its fertile maintainer line JB cotton plants, using the Illumina HiSeq 2000 sequencing platform. A total of 709 (1.8%) DE genes including 293 up-regulated and 416 down-regulated genes were identified in JA-CMS line comparing with its maintainer line at the SS stage, and 644 (1.6%) DE genes with 263 up-regulated and 381 down-regulated genes were detected at the MS stage. By comparing the two stages in the same material, there were 8 up-regulated and 9 down-regulated DE genes in JA-CMS line and 29 up-regulated and 9 down-regulated DE genes in JB maintainer line at the MS stage. Quantitative RT-PCR was used to validate 7 randomly selected DE genes. Bioinformatics analysis revealed that genes involved in reduction-oxidation reactions and alpha-linolenic acid metabolism were down-regulated, while genes pertaining to photosynthesis and flavonoid biosynthesis were up-regulated in JA-CMS floral buds compared with their JB counterparts at the SS and/or MS stages. All these four biological processes play important roles in reactive oxygen species (ROS) homeostasis, which may be an important factor contributing to the sterile trait of JA-CMS. Further experiments are warranted to elucidate molecular mechanisms of these genes that lead to CMS.


A gain-of-function mutation in Tnni2 impeded bone development through increasing Hif3a expression in DA2B mice.

  • Xiaoquan Zhu‎ et al.
  • PLoS genetics‎
  • 2014‎

Distal arthrogryposis type 2B (DA2B) is an important genetic disorder in humans. However, the mechanisms governing this disease are not clearly understood. In this study, we generated knock-in mice carrying a DA2B mutation (K175del) in troponin I type 2 (skeletal, fast) (TNNI2), which encodes a fast-twitch skeletal muscle protein. Tnni2K175del mice (referred to as DA2B mice) showed typical DA2B phenotypes, including limb abnormality and small body size. However, the current knowledge concerning TNNI2 could not explain the small body phenotype of DA2B mice. We found that Tnni2 was expressed in the osteoblasts and chondrocytes of long bone growth plates. Expression profile analysis using radii and ulnae demonstrated that Hif3a expression was significantly increased in the Tnni2K175del mice. Chromatin immunoprecipitation assays indicated that both wild-type and mutant tnni2 protein can bind to the Hif3a promoter using mouse primary osteoblasts. Moreover, we showed that the mutant tnni2 protein had a higher capacity to transactivate Hif3a than the wild-type protein. The increased amount of hif3a resulted in impairment of angiogenesis, delay in endochondral ossification, and decrease in chondrocyte differentiation and osteoblast proliferation, suggesting that hif3a counteracted hif1a-induced Vegf expression in DA2B mice. Together, our data indicated that Tnni2K175del mutation led to abnormally increased hif3a and decreased vegf in bone, which explain, at least in part, the small body size of Tnni2K175del mice. Furthermore, our findings revealed a new function of tnni2 in the regulation of bone development, and the study of gain-of-function mutation in Tnni2 in transgenic mice opens a new avenue to understand the pathological mechanism of human DA2B disorder.


Self-assembled membrane composed of amyloid-like proteins for efficient size-selective molecular separation and dialysis.

  • Facui Yang‎ et al.
  • Nature communications‎
  • 2018‎

The design and scalable construction of robust ultrathin protein membranes with tunable separation properties remain a key challenge in chemistry and materials science. Here, we report a macroscopic ultrathin protein membrane with the potential for scaled-up fabrication and excellent separation efficiency. This membrane, which is formed by fast amyloid-like lysozyme aggregation at air/water interface, has a controllable thickness that can be tuned to 30-250 nm and pores with a mean size that can be tailored from 1.8 to 3.2 nm by the protein concentration. This membrane can retain > 3 nm molecules and particles while permitting the transport of small molecules at a rate that is 1~4 orders of magnitude faster than the rate of existing materials. This membrane further exhibits excellent hemodialysis performance, especially for the removal of middle-molecular-weight uremic toxins, which is 5~6 times higher in the clearance per unit area than the typical literature values reported to date.


Amorphous Ni x Co y P-supported TiO2 nanotube arrays as an efficient hydrogen evolution reaction electrocatalyst in acidic solution.

  • Yong Li‎ et al.
  • Beilstein journal of nanotechnology‎
  • 2019‎

Bimetallic phosphides have been attracting increasing attention due to their synergistic effect for improving the hydrogen evolution reaction as compared to monometallic phosphides. In this work, NiCoP modified hybrid electrodes were fabricated by a one-step electrodeposition process with TiO2 nanotube arrays (TNAs) as a carrier. X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy and scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy were used to characterize the physiochemical properties of the samples. The electrochemical performance was investigated by cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. We show that after incorporating Co into Ni-P, the resulting Ni x Co y P/TNAs present enhanced electrocatalytic activity due to the improved electron transfer and increased electrochemically active surface area (ECSA). In 0.5 mol L-1 H2SO4 electrolyte, the Ni x Co y P/TNAs (x = 3.84, y = 0.78) demonstrated an ECSA value of 52.1 mF cm-2, which is 3.8 times that of Ni-P/TNAs (13.7 mF cm-2). In a two-electrode system with a Pt sheet as the anode, the Ni x Co y P/TNAs presented a bath voltage of 1.92 V at 100 mA cm-2, which is an improvment of 79% over that of 1.07 V at 10 mA cm-2.


Novel Digital Features Discriminate Between Drought Resistant and Drought Sensitive Rice Under Controlled and Field Conditions.

  • Lingfeng Duan‎ et al.
  • Frontiers in plant science‎
  • 2018‎

Dynamic quantification of drought response is a key issue both for variety selection and for functional genetic study of rice drought resistance. Traditional assessment of drought resistance traits, such as stay-green and leaf-rolling, has utilized manual measurements, that are often subjective, error-prone, poorly quantified and time consuming. To relieve this phenotyping bottleneck, we demonstrate a feasible, robust and non-destructive method that dynamically quantifies response to drought, under both controlled and field conditions. Firstly, RGB images of individual rice plants at different growth points were analyzed to derive 4 features that were influenced by imposition of drought. These include a feature related to the ability to stay green, which we termed greenness plant area ratio (GPAR) and 3 shape descriptors [total plant area/bounding rectangle area ratio (TBR), perimeter area ratio (PAR) and total plant area/convex hull area ratio (TCR)]. Experiments showed that these 4 features were capable of discriminating reliably between drought resistant and drought sensitive accessions, and dynamically quantifying the drought response under controlled conditions across time (at either daily or half hourly time intervals). We compared the 3 shape descriptors and concluded that PAR was more robust and sensitive to leaf-rolling than the other shape descriptors. In addition, PAR and GPAR proved to be effective in quantification of drought response in the field. Moreover, the values obtained in field experiments using the collection of rice varieties were correlated with those derived from pot-based experiments. The general applicability of the algorithms is demonstrated by their ability to probe archival Miscanthus data previously collected on an independent platform. In conclusion, this image-based technology is robust providing a platform-independent tool for quantifying drought response that should be of general utility for breeding and functional genomics in future.


A positive feedback loop between GRP78 and VPS34 is critical for GRP78-mediated autophagy in cancer cells.

  • Yingying Wang‎ et al.
  • Experimental cell research‎
  • 2017‎

Autophagy and GRP78 overexpression are two important means by which tumor cells resist microenvironmental stress and chemotherapeutic drugs; however, the relationship between autophagy and GRP78 remains unclear. Here, we found that forced expression of GRP78 in tumor cells promoted autophagy, which was indicated by alterations in the levels of autophagy related proteins, such as increased VPS34 and LC3-II, and decreased p62 and LC3-I. Consistently, GRP78 knockdown suppressed tumor cell autophagy. Our results further demonstrated that GRP78-induced autophagy was mediated by VPS34, and that UPR-associated autophagy was also involved. GRP78-overexpressing cells treated with VPS34 siRNA reversed the autophagy induced by GRP78. Importantly, the expression of microRNA-143 (miR-143) was decreased in GRP78-overexpressing cells, and the increased expression of VPS34 was reversed by treatment with miR-143 mimic. This demonstrated that miR-143 plays a key role in GRP78's mediation of VPS34 expression. In addition, GRP78 acetylation was also involved in the occurrence of autophagy through upregulating VPS34. In turn, high expression of VPS34 promoted GRP78 transcription by modulating the GRP78 transcription factor ATF6. Moreover, VPS34 could enhance GRP78 protein stability by inhibiting GRP78 degradation via the ubiquitin-proteasome pathway. Collectively, the results revealed a positive feedback loop between GRP78 and VPS34 in tumor cells that might be important for autophagy during tumor development.


DNA Conformation Induces Adaptable Binding by Tandem Zinc Finger Proteins.

  • Anamika Patel‎ et al.
  • Cell‎
  • 2018‎

Tandem zinc finger (ZF) proteins are the largest and most rapidly diverging family of DNA-binding transcription regulators in mammals. ZFP568 represses a transcript of placental-specific insulin like growth factor 2 (Igf2-P0) in mice. ZFP568 binds a 24-base pair sequence-specific element upstream of Igf2-P0 via the eleven-ZF array. Both DNA and protein conformations deviate from the conventional one finger-three bases recognition, with individual ZFs contacting 2, 3, or 4 bases and recognizing thymine on the opposite strand. These interactions arise from a shortened minor groove caused by an AT-rich stretch, suggesting adaptability of ZF arrays to sequence variations. Despite conservation in mammals, mutations at Igf2 and ZFP568 reduce their binding affinity in chimpanzee and humans. Our studies provide important insights into the evolutionary and structural dynamics of ZF-DNA interactions that play a key role in mammalian development and evolution.


Effects of siRNA-mediated knockdown of jumonji domain containing 2A on proliferation, migration and invasion of the human breast cancer cell line MCF-7.

  • Bei-Xu Li‎ et al.
  • Experimental and therapeutic medicine‎
  • 2012‎

Jumonji domain containing 2A (JMJD2A) is a potential cancer-associated gene that may be involved in human breast cancer. The present study aimed to investigate suppressive effects on the MCF-7 human breast cancer cell line by transfection with JMJD2A-specific siRNA. Quantitative real-time PCR and western blot analysis were used to detect the expression levels of JMJD2A. Flow cytometric (FCM) analysis and WST-8 assay were used to evaluate cell proliferation. Boyden chambers were used in cell migration and invasion assays to evaluate the cell exercise capacity. Expression levels of JMJD2A mRNA and protein in the siRNA group were both downregulated successfully by transfection. FCM results showed that the percentage of cells in the G0/G1 phase in the siRNA group was significantly greater than that in the blank (P<0.05) and negative control groups (P<0.05). Additionally, the mean absorbance in the siRNA group was significantly lower (P<0.05), as observed by WST-8 assay. Moreover, a decreased number of migrated cells in the siRNA group was observed (P<0.05) using a cell migration and invasion assay. These data indicated that knockdown of JMJD2A may cause inhibition of proliferation, migration and invasion of MCF-7 cells. This study provides a new perspective in understanding the molecular mechanisms underlying the progression of breast cancer and offers a potential therapeutic target for breast cancer.


Luteolin inhibits behavioral sensitization by blocking methamphetamine-induced MAPK pathway activation in the caudate putamen in mice.

  • Tinglin Yan‎ et al.
  • PloS one‎
  • 2014‎

To investigate the effect of luteolin on methamphetamine (MA)-induced behavioral sensitization and mitogen-activated protein kinase (MAPK) signal transduction pathway activation in mice.


The pseudogene derived from long non-coding RNA DUXAP10 promotes colorectal cancer cell growth through epigenetically silencing of p21 and PTEN.

  • Yifan Lian‎ et al.
  • Scientific reports‎
  • 2017‎

Recently, substantial evidence has demonstrated that pseudogene derived lncRNAs are crucial regulators of cancer development and progression. DUXAP10,a pseudogene derived long non-coding RNA(lncRNA), is overexpression in colorectal cancer (CRC), but its expression pattern, biological function and underlying mechanism in CRC is still undetermined. In this study, we observed that DUXAP10 was up-regulated in CRC tissues which was positively correlated with advanced pathological stages, larger tumor sizes and lymph node metastasis. Additionally, knockdown of DUXAP10 inhibited cell proliferation, induced cell apoptosis and increase the number of G0/G1 cells significantly in the HCT116 and SW480 cell lines. Moreover, DUXAP10 silencing inhibited tumor growth in vivo. Further mechanism study showed that, by binding to histone demethylase lysine-specific demethylase 1 (LSD1), DUXAP10 promote CRC cell growth and reduced cell apoptosis through silencing the expression of p21 and phosphatase and tensin homolog (PTEN) tumor suppressor. Our findings suggested that the pseudogene-derived from lncRNA DUXAP10 promotes the biological progression of CRC and is likely to be a potential therapeutic target for CRC intervention.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: