Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Affy exon tissues: exon levels in normal tissues in human, mouse and rat.

  • Andrew A Pohl‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2009‎

Most genes in human, mouse and rat produce more than one transcript isoform. The Affymetrix Exon Array is a tool for studying the many processes that regulate RNA production, with separate probesets measuring RNA levels at known and putative exons. For insights on how exons levels vary between normal tissues, we constructed the Affy Exon Tissues track from tissue data published by Affymetrix. This track reports exon probeset intensities as log ratios relative to median values across the dataset and renders them as colored heat maps, to yield quick visual identification of exons with intensities that vary between normal tissues.


The UCSC Genome Browser database: 2014 update.

  • Donna Karolchik‎ et al.
  • Nucleic acids research‎
  • 2014‎

The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a large collection of organisms, primarily vertebrates, with an emphasis on the human and mouse genomes. The Browser's web-based tools provide an integrated environment for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic data sets. As of September 2013, the database contained genomic sequence and a basic set of annotation 'tracks' for ∼90 organisms. Significant new annotations include a 60-species multiple alignment conservation track on the mouse, updated UCSC Genes tracks for human and mouse, and several new sets of variation and ENCODE data. New software tools include a Variant Annotation Integrator that returns predicted functional effects of a set of variants uploaded as a custom track, an extension to UCSC Genes that displays haplotype alleles for protein-coding genes and an expansion of data hubs that includes the capability to display remotely hosted user-provided assembly sequence in addition to annotation data. To improve European access, we have added a Genome Browser mirror (http://genome-euro.ucsc.edu) hosted at Bielefeld University in Germany.


Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser.

  • Brian J Raney‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2014‎

Track data hubs provide an efficient mechanism for visualizing remotely hosted Internet-accessible collections of genome annotations. Hub datasets can be organized, configured and fully integrated into the University of California Santa Cruz (UCSC) Genome Browser and accessed through the familiar browser interface. For the first time, individuals can use the complete browser feature set to view custom datasets without the overhead of setting up and maintaining a mirror.


Relationship between nucleosome positioning and progesterone-induced alternative splicing in breast cancer cells.

  • Camilla Iannone‎ et al.
  • RNA (New York, N.Y.)‎
  • 2015‎

Splicing of mRNA precursors can occur cotranscriptionally and it has been proposed that chromatin structure influences splice site recognition and regulation. Here we have systematically explored potential links between nucleosome positioning and alternative splicing regulation upon progesterone stimulation of breast cancer cells. We confirm preferential nucleosome positioning in exons and report four distinct profiles of nucleosome density around alternatively spliced exons, with RNA polymerase II accumulation closely following nucleosome positioning. Hormone stimulation induces switches between profile classes, correlating with a subset of alternative splicing changes. Hormone-induced exon inclusion often correlates with higher nucleosome occupancy at the exon or the preceding intronic region and with higher RNA polymerase II accumulation. In contrast, exons skipped upon hormone stimulation display low nucleosome densities even before hormone treatment, suggesting that chromatin structure primes alternative splicing regulation. Skipped exons frequently harbor binding sites for hnRNP AB, a hormone-induced splicing regulator whose knock down prevents some hormone-induced skipping events. Collectively, our results argue that a variety of chromatin architecture mechanisms can influence alternative splicing decisions.


The UCSC Genome Browser database: 2015 update.

  • Kate R Rosenbloom‎ et al.
  • Nucleic acids research‎
  • 2015‎

Launched in 2001 to showcase the draft human genome assembly, the UCSC Genome Browser database (http://genome.ucsc.edu) and associated tools continue to grow, providing a comprehensive resource of genome assemblies and annotations to scientists and students worldwide. Highlights of the past year include the release of a browser for the first new human genome reference assembly in 4 years in December 2013 (GRCh38, UCSC hg38), a watershed comparative genomics annotation (100-species multiple alignment and conservation) and a novel distribution mechanism for the browser (GBiB: Genome Browser in a Box). We created browsers for new species (Chinese hamster, elephant shark, minke whale), 'mined the web' for DNA sequences and expanded the browser display with stacked color graphs and region highlighting. As our user community increasingly adopts the UCSC track hub and assembly hub representations for sharing large-scale genomic annotation data sets and genome sequencing projects, our menu of public data hubs has tripled.


The UCSC Ebola Genome Portal.

  • Maximilian Haeussler‎ et al.
  • PLoS currents‎
  • 2014‎

With the Ebola epidemic raging out of control in West Africa, there has been a flurry of research into the Ebola virus, resulting in the generation of much genomic data.


The UCSC Genome Browser database: update 2011.

  • Pauline A Fujita‎ et al.
  • Nucleic acids research‎
  • 2011‎

The University of California, Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online access to a database of genomic sequence and annotation data for a wide variety of organisms. The Browser also has many tools for visualizing, comparing and analyzing both publicly available and user-generated genomic data sets, aligning sequences and uploading user data. Among the features released this year are a gene search tool and annotation track drag-reorder functionality as well as support for BAM and BigWig/BigBed file formats. New display enhancements include overlay of multiple wiggle tracks through use of transparent coloring, options for displaying transformed wiggle data, a 'mean+whiskers' windowing function for display of wiggle data at high zoom levels, and more color schemes for microarray data. New data highlights include seven new genome assemblies, a Neandertal genome data portal, phenotype and disease association data, a human RNA editing track, and a zebrafish Conservation track. We also describe updates to existing tracks.


ENCODE whole-genome data in the UCSC genome browser (2011 update).

  • Brian J Raney‎ et al.
  • Nucleic acids research‎
  • 2011‎

The ENCODE project is an international consortium with a goal of cataloguing all the functional elements in the human genome. The ENCODE Data Coordination Center (DCC) at the University of California, Santa Cruz serves as the central repository for ENCODE data. In this role, the DCC offers a collection of high-throughput, genome-wide data generated with technologies such as ChIP-Seq, RNA-Seq, DNA digestion and others. This data helps illuminate transcription factor-binding sites, histone marks, chromatin accessibility, DNA methylation, RNA expression, RNA binding and other cell-state indicators. It includes sequences with quality scores, alignments, signals calculated from the alignments, and in most cases, element or peak calls calculated from the signal data. Each data set is available for visualization and download via the UCSC Genome Browser (http://genome.ucsc.edu/). ENCODE data can also be retrieved using a metadata system that captures the experimental parameters of each assay. The ENCODE web portal at UCSC (http://encodeproject.org/) provides information about the ENCODE data and links for access.


Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation.

  • François Le Dily‎ et al.
  • Genes & development‎
  • 2014‎

The human genome is segmented into topologically associating domains (TADs), but the role of this conserved organization during transient changes in gene expression is not known. Here we describe the distribution of progestin-induced chromatin modifications and changes in transcriptional activity over TADs in T47D breast cancer cells. Using ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing), Hi-C (chromosome capture followed by high-throughput sequencing), and three-dimensional (3D) modeling techniques, we found that the borders of the ∼ 2000 TADs in these cells are largely maintained after hormone treatment and that up to 20% of the TADs could be considered as discrete regulatory units where the majority of the genes are either transcriptionally activated or repressed in a coordinated fashion. The epigenetic signatures of the TADs are homogeneously modified by hormones in correlation with the transcriptional changes. Hormone-induced changes in gene activity and chromatin remodeling are accompanied by differential structural changes for activated and repressed TADs, as reflected by specific and opposite changes in the strength of intra-TAD interactions within responsive TADs. Indeed, 3D modeling of the Hi-C data suggested that the structure of TADs was modified upon treatment. The differential responses of TADs to progestins and estrogens suggest that TADs could function as "regulons" to enable spatially proximal genes to be coordinately transcribed in response to hormones.


The UCSC Genome Browser database: 2016 update.

  • Matthew L Speir‎ et al.
  • Nucleic acids research‎
  • 2016‎

For the past 15 years, the UCSC Genome Browser (http://genome.ucsc.edu/) has served the international research community by offering an integrated platform for viewing and analyzing information from a large database of genome assemblies and their associated annotations. The UCSC Genome Browser has been under continuous development since its inception with new data sets and software features added frequently. Some release highlights of this year include new and updated genome browsers for various assemblies, including bonobo and zebrafish; new gene annotation sets; improvements to track and assembly hub support; and a new interactive tool, the "Data Integrator", for intersecting data from multiple tracks. We have greatly expanded the data sets available on the most recent human assembly, hg38/GRCh38, to include updated gene prediction sets from GENCODE, more phenotype- and disease-associated variants from ClinVar and ClinGen, more genomic regulatory data, and a new multiple genome alignment.


ENCODE whole-genome data in the UCSC Genome Browser.

  • Kate R Rosenbloom‎ et al.
  • Nucleic acids research‎
  • 2010‎

The Encyclopedia of DNA Elements (ENCODE) project is an international consortium of investigators funded to analyze the human genome with the goal of producing a comprehensive catalog of functional elements. The ENCODE Data Coordination Center at The University of California, Santa Cruz (UCSC) is the primary repository for experimental results generated by ENCODE investigators. These results are captured in the UCSC Genome Bioinformatics database and download server for visualization and data mining via the UCSC Genome Browser and companion tools (Rhead et al. The UCSC Genome Browser Database: update 2010, in this issue). The ENCODE web portal at UCSC (http://encodeproject.org or http://genome.ucsc.edu/ENCODE) provides information about the ENCODE data and convenient links for access.


The UCSC Archaeal Genome Browser.

  • Kevin L Schneider‎ et al.
  • Nucleic acids research‎
  • 2006‎

As more archaeal genomes are sequenced, effective research and analysis tools are needed to integrate the diverse information available for any given locus. The feature-rich UCSC Genome Browser, created originally to annotate the human genome, can be applied to any sequenced organism. We have created a UCSC Archaeal Genome Browser, available at http://archaea.ucsc.edu/, currently with 26 archaeal genomes. It displays G/C content, gene and operon annotation from multiple sources, sequence motifs (promoters and Shine-Dalgarno), microarray data, multi-genome alignments and protein conservation across phylogenetic and habitat categories. We encourage submission of new experimental and bioinformatic analysis from contributors. The purpose of this tool is to aid biological discovery and facilitate greater collaboration within the archaeal research community.


Whole-Genome Sequencing Can Identify Clinically Relevant Variants from a Single Sub-Punch of a Dried Blood Spot Specimen.

  • David J McBride‎ et al.
  • International journal of neonatal screening‎
  • 2023‎

The collection of dried blood spots (DBS) facilitates newborn screening for a variety of rare, but very serious conditions in healthcare systems around the world. Sub-punches of varying sizes (1.5-6 mm) can be taken from DBS specimens to use as inputs for a range of biochemical assays. Advances in DNA sequencing workflows allow whole-genome sequencing (WGS) libraries to be generated directly from inputs such as peripheral blood, saliva, and DBS. We compared WGS metrics obtained from libraries generated directly from DBS to those generated from DNA extracted from peripheral blood, the standard input for this type of assay. We explored the flexibility of DBS as an input for WGS by altering the punch number and size as inputs to the assay. We showed that WGS libraries can be successfully generated from a variety of DBS inputs, including a single 3 mm or 6 mm diameter punch, with equivalent data quality observed across a number of key metrics of importance in the detection of gene variants. We observed no difference in the performance of DBS and peripheral-blood-extracted DNA in the detection of likely pathogenic gene variants in samples taken from individuals with cystic fibrosis or phenylketonuria. WGS can be performed directly from DBS and is a powerful method for the rapid discovery of clinically relevant, disease-causing gene variants.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: