Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Pharmacological characterization of the orexin/hypocretin receptor agonist Nag 26.

  • Maiju K Rinne‎ et al.
  • European journal of pharmacology‎
  • 2018‎

One promising series of small-molecule orexin receptor agonists has been described, but the molecular pharmacological properties, i.e. ability and potency to activate the different orexin receptor-regulated signal pathways have not been reported for any of these ligands. We have thus here assessed these properties for the most potent ligand of the series, 4'-methoxy-N,N-dimethyl-3'-[N-(3-{[2-(3-methylbenzamido)ethyl]amino}phenyl sulfamoyl]-(1,1'-biphenyl)-3-carboxamide (Nag 26). Chinese hamster ovary-K1 cells expressing human orexin receptor subtypes OX1 and OX2 were used. Ca2+ elevation and cell viability and death were assessed by fluorescent methods, the extracellular signal-regulated kinase pathway by a luminescent Elk-1 reporter assay, and phospholipase C and adenylyl cyclase activities by radioactive methods. The data suggest that for the Gq-dependent responses, Ca2+, phospholipase C and Elk-1, Nag 26 is a full agonist for both receptors, though of much lower potency. However, saturation was not always reached for OX1, partially due to Nag 26's low solubility and partially because the response decreased at high concentrations. The latter occurs in the same range as some reduction of cell viability, which is independent of orexin receptors. Based on the EC50, Nag 26 was OX2-selective by 20-200 fold in different assays, with some indication of biased agonism (as compared to orexin-A). Nag 26 is a potent orexin receptor agonist with a largely similar pharmacological profile as orexin-A. However, its weaker potency (low-mid micromolar) and low water solubility as well as the non-specific effect in the mid-micromolar range may limit its usefulness under physiological conditions.


Insights into the mechanism of membrane pyrophosphatases by combining experiment and computer simulation.

  • Nita R Shah‎ et al.
  • Structural dynamics (Melville, N.Y.)‎
  • 2017‎

Membrane-integral pyrophosphatases (mPPases) couple the hydrolysis of pyrophosphate (PPi) to the pumping of Na+, H+, or both these ions across a membrane. Recently solved structures of the Na+-pumping Thermotoga maritima mPPase (TmPPase) and H+-pumping Vigna radiata mPPase revealed the basis of ion selectivity between these enzymes and provided evidence for the mechanisms of substrate hydrolysis and ion-pumping. Our atomistic molecular dynamics (MD) simulations of TmPPase demonstrate that loop 5-6 is mobile in the absence of the substrate or substrate-analogue bound to the active site, explaining the lack of electron density for this loop in resting state structures. Furthermore, creating an apo model of TmPPase by removing ligands from the TmPPase:IDP:Na structure in MD simulations resulted in increased dynamics in loop 5-6, which results in this loop moving to uncover the active site, suggesting that interactions between loop 5-6 and the imidodiphosphate and its associated Mg2+ are important for holding a loop-closed conformation. We also provide further evidence for the transport-before-hydrolysis mechanism by showing that the non-hydrolyzable substrate analogue, methylene diphosphonate, induces low levels of proton pumping by VrPPase.


Structural insight into small molecule action on Frizzleds.

  • Paweł Kozielewicz‎ et al.
  • Nature communications‎
  • 2020‎

WNT-Frizzled (FZD) signaling plays a critical role in embryonic development, stem cell regulation and tissue homeostasis. FZDs are linked to severe human pathology and are seen as a promising target for therapy. Despite intense efforts, no small molecule drugs with distinct efficacy have emerged. Here, we identify the Smoothened agonist SAG1.3 as a partial agonist of FZD6 with limited subtype selectivity. Employing extensive in silico analysis, resonance energy transfer- and luciferase-based assays we describe the mode of action of SAG1.3. We define the ability of SAG1.3 to bind to FZD6 and to induce conformational changes in the receptor, recruitment and activation of G proteins and dynamics in FZD-Dishevelled interaction. Our results provide the proof-of-principle that FZDs are targetable by small molecules acting on their seven transmembrane spanning core. Thus, we provide a starting point for a structure-guided and mechanism-based drug discovery process to exploit the potential of FZDs as therapeutic targets.


Frizzled BRET sensors based on bioorthogonal labeling of unnatural amino acids reveal WNT-induced dynamics of the cysteine-rich domain.

  • Maria Kowalski-Jahn‎ et al.
  • Science advances‎
  • 2021‎

Frizzleds (FZD1–10) are G protein–coupled receptors containing an extracellular cysteine-rich domain (CRD) binding Wingless/Int-1 lipoglycoproteins (WNTs). Despite the role of WNT/FZD signaling in health and disease, our understanding of how WNT binding is translated into receptor activation and transmembrane signaling remains limited. Current hypotheses dispute the roles for conformational dynamics. To clarify how WNT binding to FZD translates into receptor dynamics, we devised conformational FZD-CRD biosensors based on bioluminescence resonance energy transfer (BRET). Using FZD with N-terminal nanoluciferase (Nluc) and fluorescently labeled unnatural amino acids in the linker domain and extracellular loop 3, we show that WNT-3A and WNT-5A induce similar CRD conformational rearrangements despite promoting distinct signaling pathways and that CRD dynamics are not required for WNT/β-catenin signaling. Thus, these FZD-CRD biosensors provide insights into binding, activation, and signaling processes in FZDs. The sensor design is broadly applicable to explore ligand-induced dynamics also in other membrane receptors.


Defining Dynamics of Membrane-Bound Pyrophosphatases by Experimental and Computational Single-Molecule FRET.

  • Steven P D Harborne‎ et al.
  • Methods in enzymology‎
  • 2018‎

Membrane-bound pyrophosphatases couple the hydrolysis of inorganic pyrophosphate to the pumping of ions (sodium or protons) across a membrane in order to generate an electrochemical gradient. This class of membrane protein is widely conserved across plants, fungi, archaea, and bacteria, but absent in multicellular animals, making them a viable target for drug design against protozoan parasites such as Plasmodium falciparum. An excellent understanding of many of the catalytic states throughout the enzymatic cycle has already been afforded by crystallography. However, the dynamics and kinetics of the catalytic cycle between these static snapshots remain to be elucidated. Here, we employ single-molecule Förster resonance energy transfer (FRET) measurements to determine the dynamic range and frequency of conformations available to the enzyme in a lipid bilayer during the catalytic cycle. First, we explore issues related to the introduction of fluorescent dyes by cysteine mutagenesis; we discuss the importance of residue selection for dye attachment, and the balance between mutating areas of the protein that will provide useful dynamics while not altering highly conserved residues that could disrupt protein function. To complement and guide the experiments, we used all-atom molecular dynamics simulations and computational methods to estimate FRET efficiency distributions for dye pairs at different sites in different protein conformational states. We present preliminary single-molecule FRET data that points to insights about the binding modes of different membrane-bound pyrophosphatase substrates and inhibitors.


Orexin receptor agonist Yan 7874 is a weak agonist of orexin/hypocretin receptors and shows orexin receptor-independent cytotoxicity.

  • Ainoleena Turku‎ et al.
  • PloS one‎
  • 2017‎

Two promising lead structures of small molecular orexin receptor agonist have been reported, but without detailed analyses of the pharmacological properties. One of them, 1-(3,4-dichlorophenyl)-2-[2-imino-3-(4-methylbenzyl)-2,3-dihydro-1H-benzo[d]imidazol-1-yl]ethan-1-ol (Yan 7874), is commercially available, and we set out to analyze its properties. As test system we utilized human OX1 and OX2 orexin receptor-expressing Chinese hamster ovary (CHO) K1 cells as well as control CHO-K1 and neuro-2a neuroblastoma cells. Gq-coupling was assessed by measurement of intracellular Ca2+ and phospholipase C activity, and the coupling to Gi and Gs by adenylyl cyclase inhibition and stimulation, respectively. At concentrations above 1 μM, strong Ca2+ and low phospholipase C responses to Yan 7874 were observed in both OX1- and OX2-expressing cells. However, a major fraction of the response was not mediated by orexin receptors, as determined utilizing the non-selective orexin receptor antagonist N-biphenyl-2-yl-1-{[(1-methyl-1H-benzimidazol-2-yl)sulfanyl]acetyl}-L-prolinamide (TCS 1102) as well as control CHO-K1 cells. Yan 7874 did not produce any specific adenylyl cyclase response. Some experiments suggested an effect on cell viability by Yan 7874, and we thus analyzed this. Within a few hours of exposure, Yan 7874 markedly changed cell morphology (shrunken, rich in vacuoles), reduced growth, promoted cell detachment, and induced necrotic cell death. The effect was equal in cells expressing orexin receptors or not. Thus, Yan 7874 is a weak partial agonist of orexin receptors. It also displays strong off-target effects in the same concentration range, culminating in necrotic cell demise. This makes Yan 7874 unsuitable as orexin receptor agonist.


Asymmetry in catalysis by Thermotoga maritima membrane-bound pyrophosphatase demonstrated by a nonphosphorus allosteric inhibitor.

  • Keni Vidilaseris‎ et al.
  • Science advances‎
  • 2019‎

Membrane-bound pyrophosphatases are homodimeric integral membrane proteins that hydrolyze pyrophosphate into orthophosphates, coupled to the active transport of protons or sodium ions across membranes. They are important in the life cycle of bacteria, archaea, plants, and parasitic protists, but no homologous proteins exist in vertebrates, making them a promising drug target. Here, we report the first nonphosphorus allosteric inhibitor of the thermophilic bacterium Thermotoga maritima membrane-bound pyrophosphatase and its bound structure together with the substrate analog imidodiphosphate. The unit cell contains two protein homodimers, each binding a single inhibitor dimer near the exit channel, creating a hydrophobic clamp that inhibits the movement of β-strand 1-2 during pumping, and thus prevents the hydrophobic gate from opening. This asymmetry of inhibitor binding with respect to each homodimer provides the first clear structural demonstration of asymmetry in the catalytic cycle of membrane-bound pyrophosphatases.


Synthesis and Cytotoxicity Evaluation of Spirocyclic Bromotyrosine Clavatadine C Analogs.

  • Piyush A Patel‎ et al.
  • Marine drugs‎
  • 2021‎

Marine-originated spirocyclic bromotyrosines are considered as promising scaffolds for new anticancer drugs. In a continuation of our research to develop potent and more selective anticancer compounds, we synthesized a library of 32 spirocyclic clavatadine analogs by replacing the agmatine, i.e., 4-(aminobutyl)guanidine, side chain with different substituents. These compounds were tested for cytotoxicity against skin cancer using the human melanoma cell line (A-375) and normal human skin fibroblast cell line (Hs27). The highest cytotoxicity against the A-375 cell line was observed for dichloro compound 18 (CC50 0.4 ± 0.3 µM, selectivity index (SI) 2). The variation of selectivity ranged from SI 0.4 to reach 2.4 for the pyridin-2-yl derivative 29 and hydrazide analog of 2-picoline 37. The structure-activity relationships of the compounds in respect to cytotoxicity and selectivity toward cancer cell lines are discussed.


Deconvolution of WNT-induced Frizzled conformational dynamics with fluorescent biosensors.

  • Hannes Schihada‎ et al.
  • Biosensors & bioelectronics‎
  • 2021‎

The G protein-coupled receptors Frizzled1-10 (FZD1-10) act as molecular checkpoints mediating intracellular signaling induced by 19 mammalian, secreted Wingless/Int-1 lipoglycoproteins (WNTs). Despite the vital roles of these signaling components in health and disease, our knowledge about WNT/FZD selectivity, and the mechanisms of receptor activation and intracellular signal propagation by individual ligand/receptor pairs is limited due to the current lack of suitable biophysical techniques. Here, we developed fluorescence-based biosensors that detect WNT-induced FZD conformational changes in living cells in order to assess WNT action via FZDs at the most proximal level, i.e. the receptor conformation. By testing a panel of recombinant ligands on conformational biosensors representing all four homology clusters of FZDs, we discover yet unappreciated selectivities of WNTs to their receptors and, surprisingly, identify distinct ligand-induced receptor conformations. Furthermore, we demonstrate that FZDs can undergo conformational changes upon WNT binding without being dependent on the WNT co-receptors LRP5/6. This sensor toolbox provides an advanced platform for a thorough investigation of the 190 possible WNT/FZD pairings and for future screening campaigns targeting synthetic FZD ligands. Furthermore, our findings shed new light on the complexity of the WNT/FZD signaling system and have substantial implications for our understanding of fundamental biological processes including embryonal development and tumorigenesis.


Modeling of the OX1R-orexin-A complex suggests two alternative binding modes.

  • Lasse Karhu‎ et al.
  • BMC structural biology‎
  • 2015‎

Interactions between the orexin peptides and their cognate OX1 and OX2 receptors remain poorly characterized. Site-directed mutagenesis studies on orexin peptides and receptors have indicated amino acids important for ligand binding and receptor activation. However, a better understanding of specific pairwise interactions would benefit small molecule discovery.


Rare genetic variability in human drug target genes modulates drug response and can guide precision medicine.

  • Yitian Zhou‎ et al.
  • Science advances‎
  • 2021‎

Interindividual variability in drug response constitutes a major concern in pharmacotherapy. While polymorphisms in genes involved in drug disposition have been extensively studied, drug target variability remains underappreciated. By mapping the genomic variability of all human drug target genes onto high-resolution crystal structures of drug target complexes, we identified 1094 variants localized within 6 Å of drug-binding pockets and directly affecting their geometry, topology, or physicochemical properties. We experimentally show that binding site variants affect pharmacodynamics with marked drug- and variant-specific differences. In addition, we demonstrate that a common BCHE variant confers resistance to tacrine and rivastigmine, which can be overcome by the use of derivatives based on squaric acid scaffolds or tryptophan conjugation. These findings underscore the importance of genetic drug target variability and demonstrate that integration of genomic data and structural information can inform personalized drug selection and genetically guided drug development to overcome resistance.


Residue 6.43 defines receptor function in class F GPCRs.

  • Ainoleena Turku‎ et al.
  • Nature communications‎
  • 2021‎

The class Frizzled of G protein-coupled receptors (GPCRs), consisting of ten Frizzled (FZD1-10) subtypes and Smoothened (SMO), remains one of the most enigmatic GPCR families. While SMO relies on cholesterol binding to the 7TM core of the receptor to activate downstream signaling, underlying details of receptor activation remain obscure for FZDs. Here, we aimed to investigate the activation mechanisms of class F receptors utilizing a computational biology approach and mutational analysis of receptor function in combination with ligand binding and downstream signaling assays in living cells. Our results indicate that FZDs differ substantially from SMO in receptor activation-associated conformational changes. SMO manifests a preference for a straight TM6 in both ligand binding and functional readouts. Similar to the majority of GPCRs, FZDs present with a kinked TM6 upon activation owing to the presence of residue P6.43. Functional comparison of FZD and FZD P6.43F mutants in different assay formats monitoring ligand binding, G protein activation, DVL2 recruitment and TOPflash activity, however, underlines further the functional diversity among FZDs and not only between FZDs and SMO.


Scaffold hopping from (5-hydroxymethyl) isophthalates to multisubstituted pyrimidines diminishes binding affinity to the C1 domain of protein kinase C.

  • Riccardo Provenzani‎ et al.
  • PloS one‎
  • 2018‎

Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. Utilizing the crystal structure of the PKCδ C1B domain, we have developed hydrophobic isophthalic acid derivatives that modify PKC functions by binding to the C1 domain of the enzyme. In the present study, we aimed to improve the drug-like properties of the isophthalic acid derivatives by increasing their solubility and enhancing the binding affinity. Here we describe the design and synthesis of a series of multisubstituted pyrimidines as analogs of C1 domain-targeted isophthalates and characterize their binding affinities to the PKCα isoform. In contrast to our computational predictions, the scaffold hopping from phenyl to pyrimidine core diminished the binding affinity. Although the novel pyrimidines did not establish improved binding affinity for PKCα compared to our previous isophthalic acid derivatives, the present results provide useful structure-activity relationship data for further development of ligands targeted to the C1 domain of PKC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: