Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics.

  • Laura V Vandervore‎ et al.
  • Brain : a journal of neurology‎
  • 2019‎

Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.


Photoconversion in orange and red fluorescent proteins.

  • Gert-Jan Kremers‎ et al.
  • Nature methods‎
  • 2009‎

We found that photoconversion is fairly common among orange and red fluorescent proteins, as in a screen of 12 proteins, 8 exhibited photoconversion. Specifically, three red fluorescent proteins could be switched to a green state, and two orange variants could be photoconverted to a far-red state. The orange proteins are ideal for dual-probe highlighter applications, and they exhibited the most red-shifted excitation of all fluorescent proteins described to date.


Human extrahepatic and intrahepatic cholangiocyte organoids show region-specific differentiation potential and model cystic fibrosis-related bile duct disease.

  • Monique M A Verstegen‎ et al.
  • Scientific reports‎
  • 2020‎

The development, homeostasis, and repair of intrahepatic and extrahepatic bile ducts are thought to involve distinct mechanisms including proliferation and maturation of cholangiocyte and progenitor cells. This study aimed to characterize human extrahepatic cholangiocyte organoids (ECO) using canonical Wnt-stimulated culture medium previously developed for intrahepatic cholangiocyte organoids (ICO). Paired ECO and ICO were derived from common bile duct and liver tissue, respectively. Characterization showed both organoid types were highly similar, though some differences in size and gene expression were observed. Both ECO and ICO have cholangiocyte fate differentiation capacity. However, unlike ICO, ECO lack the potential for differentiation towards a hepatocyte-like fate. Importantly, ECO derived from a cystic fibrosis patient showed no CFTR channel activity but normal chloride channel and MDR1 transporter activity. In conclusion, this study shows that ECO and ICO have distinct lineage fate and that ECO provide a competent model to study extrahepatic bile duct diseases like cystic fibrosis.


Optimisations and Challenges Involved in the Creation of Various Bioluminescent and Fluorescent Influenza A Virus Strains for In Vitro and In Vivo Applications.

  • Monique I Spronken‎ et al.
  • PloS one‎
  • 2015‎

Bioluminescent and fluorescent influenza A viruses offer new opportunities to study influenza virus replication, tropism and pathogenesis. To date, several influenza A reporter viruses have been described. These strategies typically focused on a single reporter gene (either bioluminescent or fluorescent) in a single virus backbone. However, whilst bioluminescence is suited to in vivo imaging, fluorescent viruses are more appropriate for microscopy. Therefore, the idea l reporter virus varies depending on the experiment in question, and it is important that any reporter virus strategy can be adapted accordingly. Herein, a strategy was developed to create five different reporter viruses in a single virus backbone. Specifically, enhanced green fluorescent protein (eGFP), far-red fluorescent protein (fRFP), near-infrared fluorescent protein (iRFP), Gaussia luciferase (gLUC) and firefly luciferase (fLUC) were inserted into the PA gene segment of A/PR/8/34 (H1N1). This study provides a comprehensive characterisation of the effects of different reporter genes on influenza virus replication and reporter activity. In vivo reporter gene expression, in lung tissues, was only detected for eGFP, fRFP and gLUC expressing viruses. In vitro, the eGFP-expressing virus displayed the best reporter stability and could be used for correlative light electron microscopy (CLEM). This strategy was then used to create eGFP-expressing viruses consisting entirely of pandemic H1N1, highly pathogenic avian influenza (HPAI) H5N1 and H7N9. The HPAI H5N1 eGFP-expressing virus infected mice and reporter gene expression was detected, in lung tissues, in vivo. Thus, this study provides new tools and insights for the creation of bioluminescent and fluorescent influenza A reporter viruses.


Xist and Tsix Transcription Dynamics Is Regulated by the X-to-Autosome Ratio and Semistable Transcriptional States.

  • Friedemann Loos‎ et al.
  • Molecular and cellular biology‎
  • 2016‎

In female mammals, X chromosome inactivation (XCI) is a key process in the control of gene dosage compensation between X-linked genes and autosomes. Xist and Tsix, two overlapping antisense-transcribed noncoding genes, are central elements of the X inactivation center (Xic) regulating XCI. Xist upregulation results in the coating of the entire X chromosome by Xist RNA in cis, whereas Tsix transcription acts as a negative regulator of Xist Here, we generated Xist and Tsix reporter mouse embryonic stem (ES) cell lines to study the genetic and dynamic regulation of these genes upon differentiation. Our results revealed mutually antagonistic roles for Tsix on Xist and vice versa and indicate the presence of semistable transcriptional states of the Xic locus predicting the outcome of XCI. These transcriptional states are instructed by the X-to-autosome ratio, directed by regulators of XCI, and can be modulated by tissue culture conditions.


Guide-free Cas9 from pathogenic Campylobacter jejuni bacteria causes severe damage to DNA.

  • Chinmoy Saha‎ et al.
  • Science advances‎
  • 2020‎

CRISPR-Cas9 systems are enriched in human pathogenic bacteria and have been linked to cytotoxicity by an unknown mechanism. Here, we show that upon infection of human cells, Campylobacter jejuni secretes its Cas9 (CjeCas9) nuclease into their cytoplasm. Next, a native nuclear localization signal enables CjeCas9 nuclear entry, where it catalyzes metal-dependent nonspecific DNA cleavage leading to cell death. Compared to CjeCas9, native Cas9 of Streptococcus pyogenes (SpyCas9) is more suitable for guide-dependent editing. However, in human cells, native SpyCas9 may still cause some DNA damage, most likely because of its ssDNA cleavage activity. This side effect can be completely prevented by saturation of SpyCas9 with an appropriate guide RNA, which is only partially effective for CjeCas9. We conclude that CjeCas9 plays an active role in attacking human cells rather than in viral defense. Moreover, these unique catalytic features may therefore make CjeCas9 less suitable for genome editing applications.


Three-dimensional analysis reveals two major architectural subgroups of prostate cancer growth patterns.

  • Esther I Verhoef‎ et al.
  • Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc‎
  • 2019‎

The Gleason score is one of the most important parameters for therapeutic decision-making in prostate cancer patients. Gleason growth patterns are defined by their histological features on 4- to 5-µm cross sections, and little is known about their three-dimensional architecture. Our objective was to characterize the three-dimensional architecture of prostate cancer growth patterns. Intact tissue punches (n = 46) of representative Gleason growth patterns from radical prostatectomy specimens were fluorescently stained with antibodies targeting Keratin 8/18 and Keratin 5 for the detection of luminal and basal epithelial cells, respectively. Punches were optically cleared in benzyl alcohol-benzyl benzoate and imaged using a confocal laser scanning microscope up to a depth of 500 µm. Gleason pattern 3, poorly formed pattern 4, and cords pattern 5 all formed a continuum of interconnecting tubules in which the diameter of the structures and the lumen size decreased with higher grades. In fused pattern 4, the interconnections between the tubules were markedly closer together. In these patterns, all tumor cells were in direct contact with the surrounding stroma. In contrast, cribriform Gleason pattern 4 and solid pattern 5 demonstrated a three-dimensional continuum of contiguous tumor cells, in which the vast majority of cells had no contact with the surrounding stroma. Transitions between cribriform pattern 4 and solid pattern 5 were seen. There was a decrease in the number and size of intercellular lumens from cribriform to solid growth pattern. Glomeruloid pattern 4 formed an intermediate structure consisting of a tubular network with intraluminal epithelial protrusions close to the tubule splitting points. In conclusion, three-dimensional microscopy revealed two major architectural subgroups of prostate cancer growth patterns: (1) a tubular interconnecting network including Gleason pattern 3, poorly formed and fused Gleason pattern 4, and cords Gleason pattern 5, and (2) serpentine contiguous epithelial proliferations including cribriform Gleason pattern 4 and solid Gleason pattern 5.


An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching.

  • Michele L Markwardt‎ et al.
  • PloS one‎
  • 2011‎

Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to rationally target specific amino acids for optimization by site-directed mutagenesis. Optimization of residues in strands 7 and 8 of the β-barrel improved the quantum yield of Cerulean from 0.48 to 0.60. Further optimization by incorporating the wild-type T65S mutation in the chromophore improved the quantum yield to 0.87. This variant, mCerulean3, is 20% brighter and shows greatly reduced fluorescence photoswitching behavior compared to the recently described mTurquoise fluorescent protein in vitro and in living cells. The fluorescence lifetime of mCerulean3 also fits to a single exponential time constant, making mCerulean3 a suitable choice for fluorescence lifetime microscopy experiments. Furthermore, inclusion of mCerulean3 in a fusion protein with mVenus produced FRET ratios with less variance than mTurquoise-containing fusions in living cells. Thus, mCerulean3 is a bright, photostable cyan fluorescent protein which possesses several characteristics that are highly desirable for FRET experiments.


A microcarrier-based spheroid 3D invasion assay to monitor dynamic cell movement in extracellular matrix.

  • Hui Liu‎ et al.
  • Biological procedures online‎
  • 2020‎

Cell invasion through extracellular matrix (ECM) is a critical step in tumor metastasis. To study cell invasion in vitro, the internal microenvironment can be simulated via the application of 3D models.


Ciliary Tip Signaling Compartment Is Formed and Maintained by Intraflagellar Transport.

  • Servaas N van der Burght‎ et al.
  • Current biology : CB‎
  • 2020‎

Primary cilia are ubiquitous antenna-like organelles that mediate cellular signaling and represent hotspots for human diseases termed ciliopathies. Within cilia, subcompartments are established to support signal transduction pathways, including Hedgehog signaling. How these compartments are formed and maintained remains largely unknown. Cilia use two mechanisms, a trafficking system and a diffusion barrier, to regulate the trafficking of proteins into, within, and out of cilia. The main ciliary trafficking machinery, intraflagellar transport (IFT), facilitates bidirectional transport of cargo, including signaling proteins, from the base (basal body) to the tip of the axoneme [1]. Anterograde IFT to the tip relies on kinesins, and cytoplasmic dynein enables retrograde transport back [2, 3]. To help confine proteins to cilia, a subdomain immediately distal to the basal body, called the transition zone (TZ), acts as a diffusion barrier for both membrane and soluble proteins [4-6]. Here, we show that in Caenorhabditis elegans a salt-sensing receptor-type guanylate cyclase, GCY-22, accumulates at a high concentration within a subcompartment at the distal region of the cilium. Targeting of GCY-22 to the ciliary tip is dynamic, requiring the IFT system. Disruption of the TZ barrier or IFT trafficking causes GCY-22 protein mislocalization and defects in the formation and maintenance of the ciliary tip compartment. Structure-function studies uncovered GCY-22 protein domains needed for entry and tip localization. Together, our findings provide mechanistic insights into the formation and maintenance of a novel subdomain at the cilium tip that contributes to the behavioral response to NaCl.


Correlative light and electron microscopy reveals fork-shaped structures at actin entry sites of focal adhesions.

  • Karin Legerstee‎ et al.
  • Biology open‎
  • 2022‎

Focal adhesions (FAs) are the main cellular structures to link the intracellular cytoskeleton to the extracellular matrix. FAs mediate cell adhesion, are important for cell migration and are involved in many (patho)-physiological processes. Here we examined FAs and their associated actin fibres using correlative fluorescence and scanning electron microscopy (SEM). We used fluorescence images of cells expressing paxillin-GFP to define the boundaries of FA complexes in SEM images, without using SEM contrast enhancing stains. We observed that SEM contrast was increased around the actin fibre entry site in 98% of FAs, indicating increases in protein density and possibly also phosphorylation levels in this area. In nearly three quarters of the FAs, these nanostructures had a fork shape, with the actin forming the stem and the high-contrast FA areas the fork. In conclusion, the combination of fluorescent and electron microscopy allowed accurate localisation of a highly abundant, novel fork structure at the FA-actin interface.


Rapid extravasation and establishment of breast cancer micrometastases in the liver microenvironment.

  • Michelle D Martin‎ et al.
  • Molecular cancer research : MCR‎
  • 2010‎

To examine the interplay between tumor cells and the microenvironment during early breast cancer metastasis, we developed a technique for ex vivo imaging of murine tissue explants using two-photon microscopy. Cancer cells in the liver and the lung were compared by imaging both organs at specific time points after the injection of the same polyomavirus middle T-initiated murine mammary tumor cell line. Extravasation was greatly reduced in the lung compared with the liver, with 56% of tumor cells in the liver having extravasated by 24 hours, compared with only 22% of tumor cells in the lung that have extravasated. In the liver, imaged cells continually transitioned from an intravascular location to an extravascular site, whereas in the lung, extravasation rates slowed after 6 hours. Within the liver microenvironment, the average size of the imaged micrometastatic lesions increased 4-fold between days 5 and 12. Histologic analysis of these lesions determined that by day 12, the micrometastases were heterogeneous, consisting of both tumor cells and von Willebrand factor-positive endothelial cells. Further analysis with intravenously administered lectin indicated that vessels within the micrometastatic tumor foci were patent by day 12. These data present the use of two-photon microscopy to directly compare extravasation times in metastatic sites using the same tumor cell line and highlight the differences in early events and metastatic patterns between two important secondary sites of breast cancer progression with implications for future therapy.


Three-dimensional architecture of common benign and precancerous prostate epithelial lesions.

  • Esther I Verhoef‎ et al.
  • Histopathology‎
  • 2019‎

Many glandular lesions can mimic prostate cancer microscopically, including atrophic glands, adenosis and prostatic intraepithelial neoplasia. While the characteristic histopathological and immunohistochemical features of these lesions have been well established, little is known about their three-dimensional architecture. Our objective was to evaluate the three-dimensional organisation of common prostate epithelial lesions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: