Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 153 papers

Compounds Derived from the Bhutanese Daisy, Ajania nubigena, Demonstrate Dual Anthelmintic Activity against Schistosoma mansoni and Trichuris muris.

  • Phurpa Wangchuk‎ et al.
  • PLoS neglected tropical diseases‎
  • 2016‎

Whipworms and blood flukes combined infect almost one billion people in developing countries. Only a handful of anthelmintic drugs are currently available to treat these infections effectively; there is therefore an urgent need for new generations of anthelmintic compounds. Medicinal plants have presented as a viable source of new parasiticides. Ajania nubigena, the Bhutanese daisy, has been used in Bhutanese traditional medicine for treating various diseases and our previous studies revealed that small molecules from this plant have antimalarial properties. Encouraged by these findings, we screened four major compounds isolated from A. nubigena for their anthelmintic properties.


Programmed genome editing of the omega-1 ribonuclease of the blood fluke, Schistosoma mansoni.

  • Wannaporn Ittiprasert‎ et al.
  • eLife‎
  • 2019‎

CRISPR/Cas9-based genome editing has yet to be reported in species of the Platyhelminthes. We tested this approach by targeting omega-1 (ω1) of Schistosoma mansoni as proof of principle. This secreted ribonuclease is crucial for Th2 polarization and granuloma formation. Schistosome eggs were exposed to Cas9 complexed with guide RNA complementary to ω1 by electroporation or by transduction with lentiviral particles. Some eggs were also transfected with a single stranded donor template. Sequences of amplicons from gene-edited parasites exhibited Cas9-catalyzed mutations including homology directed repaired alleles, and other analyses revealed depletion of ω1 transcripts and the ribonuclease. Gene-edited eggs failed to polarize Th2 cytokine responses in macrophage/T-cell co-cultures, while the volume of pulmonary granulomas surrounding ω1-mutated eggs following tail-vein injection into mice was vastly reduced. Knock-out of ω1 and the diminished levels of these cytokines following exposure showcase the novel application of programmed gene editing for functional genomics in schistosomes.


Co-occurrence of opisthorchiasis and diabetes exacerbates morbidity of the hepatobiliary tract disease.

  • Apisit Chaidee‎ et al.
  • PLoS neglected tropical diseases‎
  • 2018‎

Complications arising from infection with the carcinogenic liver fluke Opisthorchis viverrini cause substantial morbidity and mortality in Thailand and adjacent lower Mekong countries. In parallel, the incidence rate of diabetes mellitus (DM) is increasing in this same region, and indeed worldwide. Many residents in opisthorchiasis-endemic regions also exhibit DM, but the hepatobiliary disease arising during the co-occurrence of these two conditions remains to be characterized. Here, the histopathological profile during co-occurrence of opisthorchiasis and DM was investigated in a rodent model of human opisthorchiasis in which diabetes was induced with streptozotocin. The effects of excretory/secretory products from the liver fluke, O. viverrini (OVES) on hepatocyte and cholangiocyte responses during hyperglycemic conditions also were monitored. Both the liver fluke-infected hamsters (OV group) and hamsters with DM lost weight compared to control hamsters. Weight loss was even more marked in the hamsters with both opisthorchiasis and DM (OD group). Hypertrophy of hepatocytes, altered biliary canaliculi, and biliary hyperplasia were more prominent in the OD group, compared with OV and DM groups. Profound oxidative DNA damage, evidenced by 8-oxo-2'-deoxyguanosine, proliferating cell nuclear antigen, and periductal fibrosis characterized the OD compared to OV and DM hamsters. Upregulation of expression of cytokines in response to infection and impairment of the pathway for insulin receptor substrate (IRS)/phosphatidylinositol-3-kinases (PI3K)/protein kinase B (AKT) signaling attended these changes. In vitro, OVES and glucose provoked time- and dose-dependent effects on the proliferation of both hepatocytes and cholangiocytes. In overview, the co-occurrence of opisthorchiasis and diabetes exacerbated pathophysiological damage to the hepatobiliary tract. We speculate that opisthorchiasis and diabetes together aggravate hepatobiliary pathogenesis through an IRS/PI3K/AKT-independent pathway.


Genomes of Fasciola hepatica from the Americas Reveal Colonization with Neorickettsia Endobacteria Related to the Agents of Potomac Horse and Human Sennetsu Fevers.

  • Samantha N McNulty‎ et al.
  • PLoS genetics‎
  • 2017‎

Food borne trematodes (FBTs) are an assemblage of platyhelminth parasites transmitted through the food chain, four of which are recognized as neglected tropical diseases (NTDs). Fascioliasis stands out among the other NTDs due to its broad and significant impact on both human and animal health, as Fasciola sp., are also considered major pathogens of domesticated ruminants. Here we present a reference genome sequence of the common liver fluke, Fasciola hepatica isolated from sheep, complementing previously reported isolate from cattle. A total of 14,642 genes were predicted from the 1.14 GB genome of the liver fluke. Comparative genomics indicated that F. hepatica Oregon and related food-borne trematodes are metabolically less constrained than schistosomes and cestodes, taking advantage of the richer millieux offered by the hepatobiliary organs. Protease families differentially expanded between diverse trematodes may facilitate migration and survival within the heterogeneous environments and niches within the mammalian host. Surprisingly, the sequencing of Oregon and Uruguay F. hepatica isolates led to the first discovery of an endobacteria in this species. Two contigs from the F. hepatica Oregon assembly were joined to complete the 859,205 bp genome of a novel Neorickettsia endobacterium (nFh) closely related to the etiological agents of human Sennetsu and Potomac horse fevers. Immunohistochemical studies targeting a Neorickettsia surface protein found nFh in specific organs and tissues of the adult trematode including the female reproductive tract, eggs, the Mehlis' gland, seminal vesicle, and oral suckers, suggesting putative routes for fluke-to-fluke and fluke-to-host transmission. The genomes of F. hepatica and nFh will serve as a resource for further exploration of the biology of F. hepatica, and specifically its newly discovered trans-kingdom interaction with nFh and the impact of both species on disease in ruminants and humans.


The small RNA complement of adult Schistosoma haematobium.

  • Andreas J Stroehlein‎ et al.
  • PLoS neglected tropical diseases‎
  • 2018‎

Blood flukes of the genus Schistosoma cause schistosomiasis-a neglected tropical disease (NTD) that affects more than 200 million people worldwide. Studies of schistosome genomes have improved our understanding of the molecular biology of flatworms, but most of them have focused largely on protein-coding genes. Small non-coding RNAs (sncRNAs) have been explored in selected schistosome species and are suggested to play essential roles in the post-transcriptional regulation of genes, and in modulating flatworm-host interactions. However, genome-wide small RNA data are currently lacking for key schistosomes including Schistosoma haematobium-the causative agent of urogenital schistosomiasis of humans.


Hookworm Secreted Extracellular Vesicles Interact With Host Cells and Prevent Inducible Colitis in Mice.

  • Ramon M Eichenberger‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Gastrointestinal (GI) parasites, hookworms in particular, have evolved to cause minimal harm to their hosts, allowing them to establish chronic infections. This is mediated by creating an immunoregulatory environment. Indeed, hookworms are such potent suppressors of inflammation that they have been used in clinical trials to treat inflammatory bowel diseases (IBD) and celiac disease. Since the recent description of helminths (worms) secreting extracellular vesicles (EVs), exosome-like EVs from different helminths have been characterized and their salient roles in parasite-host interactions have been highlighted. Here, we analyze EVs from the rodent parasite Nippostrongylus brasiliensis, which has been used as a model for human hookworm infection. N. brasiliensis EVs (Nb-EVs) are actively internalized by mouse gut organoids, indicating a role in driving parasitism. We used proteomics and RNA-Seq to profile the molecular composition of Nb-EVs. We identified 81 proteins, including proteins frequently present in exosomes (like tetraspanin, enolase, 14-3-3 protein, and heat shock proteins), and 27 sperm-coating protein-like extracellular proteins. RNA-Seq analysis revealed 52 miRNA species, many of which putatively map to mouse genes involved in regulation of inflammation. To determine whether GI nematode EVs had immunomodulatory properties, we assessed their potential to suppress GI inflammation in a mouse model of inducible chemical colitis. EVs from N. brasiliensis but not those from the whipworm Trichuris muris or control vesicles from grapes protected against colitic inflammation in the gut of mice that received a single intraperitoneal injection of EVs. Key cytokines associated with colitic pathology (IL-6, IL-1β, IFNγ, and IL-17a) were significantly suppressed in colon tissues from EV-treated mice. By contrast, high levels of the anti-inflammatory cytokine IL-10 were detected in Nb-EV-treated mice. Proteins and miRNAs contained within helminth EVs hold great potential application in development of drugs to treat helminth infections as well as chronic non-infectious diseases resulting from a dysregulated immune system, such as IBD.


Granulin Secreted by the Food-Borne Liver Fluke Opisthorchis viverrini Promotes Angiogenesis in Human Endothelial Cells.

  • Brandon Haugen‎ et al.
  • Frontiers in medicine‎
  • 2018‎

The liver fluke Opisthorchis viverrini is a food-borne, zoonotic pathogen endemic to Thailand and adjacent countries in Southeast Asia. The adult developmental stage of the O. viverrini parasite excretes and secretes numerous proteins within the biliary tract including the gall bladder. Lesions caused by the feeding activities of the liver fluke represent wounds that undergo protracted cycles of healing and re-injury during chronic infection, which can last for decades. Components of the excretory/secretory (ES) complement released by the worms capably drive proliferation of bile duct epithelial cells and are implicated in establishing the oncogenic milieu that leads to bile duct cancer, cholangiocarcinoma. An ES protein, the secreted granulin-like growth factor termed Ov-GRN-1, accelerates wound resolution in mice and in vitro. To investigate angiogenesis (blood vessel development) that may contribute to wound healing promoted by liver fluke granulin and, by implication, to carcinogenesis during chronic opisthorchiasis, we employed an in vitro tubule formation assay (TFA) where human umbilical vein endothelial cells were grown on gelled basement matrix. Ten and 40 nM Ov-GRN-1 significantly stimulated angiogenesis as monitored by cellular proliferation and by TFA in real time. This demonstration of potent angiogenic property of Ov-GRN-1 bolsters earlier reports on the therapeutic potential for chronic non-healing wounds of diabetics, tobacco users, and the elderly and, in addition, showcases another of the hallmark of cancer characteristic of this carcinogenic liver fluke.


Peptide-based subunit vaccine against hookworm infection.

  • Mariusz Skwarczynski‎ et al.
  • PloS one‎
  • 2012‎

Hookworms infect more people than HIV and malaria combined, predominantly in third world countries. Treatment of infection with chemotherapy can have limited efficacy and re-infections after treatment are common. Heavy infection often leads to debilitating diseases. All these factors suggest an urgent need for development of vaccine. In an attempt to develop a vaccine targeting the major human hookworm, Necator americanus, a B-cell peptide epitope was chosen from the apical enzyme in the hemoglobin digestion cascade, the aspartic protease Na-APR-1. The A(291)Y alpha helical epitope is known to induce neutralizing antibodies that inhibit the enzymatic activity of Na-APR-1, thus reducing the capacity for hookworms to digest hemoglobin and obtain nutrients. A(291)Y was engineered such that it was flanked on both termini by a coil-promoting sequence to maintain native conformation, and subsequently incorporated into a Lipid Core Peptide (LCP) self-adjuvanting system. While A(291)Y alone or the chimeric epitope with or without Freund's adjuvants induced negligible IgG responses, the LCP construct incorporating the chimeric peptide induced a strong IgG response in mice. Antibodies produced were able to bind to and completely inhibit the enzymatic activity of Na-APR-1. The results presented show that the new chimeric LCP construct can induce effective enzyme-neutralising antibodies in mice, without the help of any additional toxic adjuvants. This approach offers promise for the development of vaccines against helminth parasites of humans and their livestock and companion animals.


Septins of Platyhelminths: identification, phylogeny, expression and localization among developmental stages of Schistosoma mansoni.

  • Ana E Zeraik‎ et al.
  • PLoS neglected tropical diseases‎
  • 2013‎

Septins are a family of eukaryotic GTP binding proteins conserved from yeasts to humans. Originally identified in mutants of budding yeast, septins participate in diverse cellular functions including cytokinesis, organization of actin networks, cell polarity, vesicle trafficking and many others. Septins assemble into heteroligomers to form filaments and rings. Here, four septins of Schistosoma mansoni are described, which appear to be conserved within the phylum Platyhelminthes. These orthologues were related to the SEPT5, SEPT10 and SEPT7 septins of humans, and hence we have termed the schistosome septins SmSEPT5, SmSEPT10, SmSEPT7.1 and SmSEPT7.2. Septin transcripts were detected throughout the developmental cycle of the schistosome and a similar expression profile was observed for septins in the stages examined, consistent with concerted production of these proteins to form heterocomplexes. Immunolocalization analyses undertaken with antibodies specific for SmSEPT5 and SmSEPT10 revealed a broad tissue distribution of septins in the schistosomulum and colocalization of septin and actin in the longitudinal and circular muscles of the sporocyst. Ciliated epidermal plates of the miracidium were rich in septins. Expression levels for these septins were elevated in germ cells in the miracidium and sporocyst. Intriguingly, septins colocalize with the protonephridial system of the cercaria, which extends laterally along the length of this larval stage. Together, the findings revealed that schistosomes expressed several septins which likely form filaments within the cells, as in other eukaryotes. Identification and localization demonstrating a broad distribution of septins across organs and tissues of schistosome contributes towards the understanding of septins in schistosomes and other flatworms.


Coming out of the shell: building the molecular infrastructure for research on parasite-harbouring snails.

  • Cinzia Cantacessi‎ et al.
  • PLoS neglected tropical diseases‎
  • 2013‎

No abstract available


Proteomic profile of Bithynia siamensis goniomphalos snails upon infection with the carcinogenic liver fluke Opisthorchis viverrini.

  • Sattrachai Prasopdee‎ et al.
  • Journal of proteomics‎
  • 2015‎

The snail Bithynia siamensis goniomphalos acts as the first intermediate host for the human liver fluke Opisthorchis viverrini, the major cause of cholangiocarcinoma (CCA) in Northeast Thailand. The undisputed link between CCA and O. viverrini infection has precipitated efforts to understand the molecular basis of host-parasite interactions with a view to ultimately developing new control strategies to combat this carcinogenic infection. To date most effort has focused on the interactions between the parasite and its human host, and little is known about the molecular relationships between the liver fluke and its snail intermediate host. In the present study we analyse the protein expression changes in different tissues of B. siamensis goniomphalos induced by infection with larval O. viverrini using iTRAQ labelling technology. We show that O. viverrini infection downregulates the expression of oxidoreductases and catalytic enzymes, while stress-related and motor proteins are upregulated. The present work could serve as a basis for future studies on the proteins implicated in the susceptibility/resistance of B. siamensis goniomphalos to O. viverrini, as well as studies on other pulmonate snail intermediate hosts of various parasitic flukes that infect humans.


Suppression of aquaporin, a mediator of water channel control in the carcinogenic liver fluke, Opisthorchis viverrini.

  • Sirikanda Thanasuwan‎ et al.
  • Parasites & vectors‎
  • 2014‎

Opisthorchiasis and Opisthorchis viverrini-associated bile duct cancer represent major public health threats in Thailand and Laos. The tegument of this food borne fluke plays pivotal roles in parasite metabolism, homeostasis and osmoregulation. Excretory/secretory products also pass from the fluke to the biliary environment, products that likely underlie pathogenesis of liver fluke infection. Aquaporins (AQPs), belong to the major intrinsic protein superfamily of integral plasma membrane channel proteins that selectively transport water across cell membranes. AQPs play key roles as water and ion transport channels through the tegument of helminth parasites.


Genome of the human hookworm Necator americanus.

  • Yat T Tang‎ et al.
  • Nature genetics‎
  • 2014‎

The hookworm Necator americanus is the predominant soil-transmitted human parasite. Adult worms feed on blood in the small intestine, causing iron-deficiency anemia, malnutrition, growth and development stunting in children, and severe morbidity and mortality during pregnancy in women. We report sequencing and assembly of the N. americanus genome (244 Mb, 19,151 genes). Characterization of this first hookworm genome sequence identified genes orchestrating the hookworm's invasion of the human host, genes involved in blood feeding and development, and genes encoding proteins that represent new potential drug targets against hookworms. N. americanus has undergone a considerable and unique expansion of immunomodulator proteins, some of which we highlight as potential treatments against inflammatory diseases. We also used a protein microarray to demonstrate a postgenomic application of the hookworm genome sequence. This genome provides an invaluable resource to boost ongoing efforts toward fundamental and applied postgenomic research, including the development of new methods to control hookworm and human immunological diseases.


HIV-1 Integrates Widely throughout the Genome of the Human Blood Fluke Schistosoma mansoni.

  • Sutas Suttiprapa‎ et al.
  • PLoS pathogens‎
  • 2016‎

Schistosomiasis is the most important helminthic disease of humanity in terms of morbidity and mortality. Facile manipulation of schistosomes using lentiviruses would enable advances in functional genomics in these and related neglected tropical diseases pathogens including tapeworms, and including their non-dividing cells. Such approaches have hitherto been unavailable. Blood stream forms of the human blood fluke, Schistosoma mansoni, the causative agent of the hepatointestinal schistosomiasis, were infected with the human HIV-1 isolate NL4-3 pseudotyped with vesicular stomatitis virus glycoprotein. The appearance of strong stop and positive strand cDNAs indicated that virions fused to schistosome cells, the nucleocapsid internalized and the RNA genome reverse transcribed. Anchored PCR analysis, sequencing HIV-1-specific anchored Illumina libraries and Whole Genome Sequencing (WGS) of schistosomes confirmed chromosomal integration; >8,000 integrations were mapped, distributed throughout the eight pairs of chromosomes including the sex chromosomes. The rate of integrations in the genome exceeded five per 1,000 kb and HIV-1 integrated into protein-encoding loci and elsewhere with integration bias dissimilar to that of human T cells. We estimated ~ 2,100 integrations per schistosomulum based on WGS, i.e. about two or three events per cell, comparable to integration rates in human cells. Accomplishment in schistosomes of post-entry processes essential for HIV-1replication, including integrase-catalyzed integration, was remarkable given the phylogenetic distance between schistosomes and primates, the natural hosts of the genus Lentivirus. These enigmatic findings revealed that HIV-1 was active within cells of S. mansoni, and provided the first demonstration that HIV-1 can integrate into the genome of an invertebrate.


Suppression of mRNAs encoding CD63 family tetraspanins from the carcinogenic liver fluke Opisthorchis viverrini results in distinct tegument phenotypes.

  • Sujittra Chaiyadet‎ et al.
  • Scientific reports‎
  • 2017‎

The liver fluke Opisthorchis viverrini infects 10 million people in Southeast Asia and causes cholangiocarcinoma (CCA). Fluke secreted and tegumental proteins contribute to the generation of a tumorigenic environment and are targets for drug and vaccine-based control measures. Herein, we identified two tetraspanins belonging to the CD63 family (Ov-TSP-2 and Ov-TSP-3) that are abundantly expressed in the tegument proteome of O. viverrini. Ov-tsp-2 and tsp-3 transcripts were detected in all developmental stages of O. viverrini. Protein fragments corresponding to the large extracellular loop (LEL) of each TSP were produced in recombinant form and antibodies were raised in rabbits. Ov-TSP-2 and TSP-3 were detected in whole worm extracts and excretory/secretory products of O. viverrini and reacted with sera from infected hamsters and humans. Antibodies confirmed localization of Ov-TSP-2 and TSP-3 to the adult fluke tegument. Using RNA interference, Ov-tsp-2 and tsp-3 mRNA expression was significantly suppressed for up to 21 days in vitro. Ultrastructural observation of tsp-2 and tsp-3 dsRNA-treated flukes resulted in phenotypes with increased tegument thickness, increased vacuolation (tsp-2) and reduced electron density (tsp-3). These studies confirm the importance of CD63 family tegument tetraspanins in parasitic flukes and support efforts to target these proteins for vaccine development.


A Schistosoma japonicum very low-density lipoprotein-binding protein.

  • Jinjiang Fan‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2003‎

Schistosomes acquire fatty acids from their hosts, although how these parasites bind human low-density lipoproteins (LDL) and like molecules that transport fatty acids is not understood. Because parasite surface-bound host LDL may provide the schistosome with cholesterol and other lipids, as well as aid immune avoidance, understanding this process may provide fundamental insights into lipid metabolism and host defense in schistosomes. To investigate molecular aspects of lipid acquisition by schistosomes, transcripts encoding a very (V)LDL-receptor ligand binding, cysteine-rich repeat-containing protein were isolated from Schistosoma japonicum cDNAs. The deduced amino acid sequence included 207 residues with an NH2-terminal LDL ligand-binding Cys-rich motif and a COOH-terminal transmembrane (TM) domain. The ligand-binding domain was similar in sequence and structure to ligand-binding Cys-rich repeat domains from mammalian very low-density lipoprotein (VLDL) and LDL receptors, which are multi-domain proteins. This putative VLDL binding protein, designated S. japonicum very low-density lipoprotein binding protein (SVLBP), appeared to be membrane-associated, sensitive to reducing conditions, and included intra-molecular disulfide linkages. A three-dimensional (3D) model suggested that two of the three Cys residues form intra- and/or inter-molecular disulfide bridges that contribute to a patch of negative charge on the molecular surface, assumed to be associated with VLDL binding activity. SVLBP in membrane-associated and soluble fractions of adult schistosomes bound human plasma VLDL in vitro, and VLDL bound to recombinant SVLBP inhibited the binding of anti-recombinant SVLBP antibodies. Immunolocalization of SVLBP revealed prominent expression in the tegument and sub-tegument of adult male schistosomes. SVLBP may play a key role in lipid acquisition by S. japonicum.


Vaccination with recombinant aspartic hemoglobinase reduces parasite load and blood loss after hookworm infection in dogs.

  • Alex Loukas‎ et al.
  • PLoS medicine‎
  • 2005‎

Hookworms infect 730 million people in developing countries where they are a leading cause of intestinal blood loss and iron-deficiency anemia. At the site of attachment to the host, adult hookworms ingest blood and lyse the erythrocytes to release hemoglobin. The parasites subsequently digest hemoglobin in their intestines using a cascade of proteolysis that begins with the Ancylostoma caninum aspartic protease 1, APR-1.


Characterization of SR3 reveals abundance of non-LTR retrotransposons of the RTE clade in the genome of the human blood fluke, Schistosoma mansoni.

  • Thewarach Laha‎ et al.
  • BMC genomics‎
  • 2005‎

It is becoming apparent that perhaps as much as half of the genome of the human blood fluke Schistosoma mansoni is constituted of mobile genetic element-related sequences. Non-long terminal repeat (LTR) retrotransposons, related to the LINE elements of mammals, comprise much of this repetitive component of the schistosome genome. Of more than 12 recognized clades of non-LTR retrotransposons, only members of the CR1, RTE, and R2 clades have been reported from the schistosome genome.


Cathepsin F cysteine protease of the human liver fluke, Opisthorchis viverrini.

  • Porntip Pinlaor‎ et al.
  • PLoS neglected tropical diseases‎
  • 2009‎

The liver fluke Opisthorchis viverrini is classified as a class I carcinogen due to the association between cholangiocarcinoma and chronic O. viverrini infection. During its feeding activity within the bile duct, the parasite secretes several cathepsin F cysteine proteases that may induce or contribute to the pathologies associated with hepatobiliary abnormalities.


Molecular cloning and characterization of Ac-MTP-2, an astacin-like metalloprotease released by adult Ancylostoma caninum.

  • Jianjun Feng‎ et al.
  • Molecular and biochemical parasitology‎
  • 2007‎

Ac-MTP-2 is an astacin-like metalloprotease secreted by adult Ancylostoma caninum hookworms. Ac-mtp-2 cDNA was cloned by immunoscreening a cDNA library with antisera prepared against adult A. caninum excretory/secretory (ES) products. The full-length Ac-mtp-2 contains 850 bp cDNA encoding a 233 amino acid open reading frame (ORF) with 32% amino acid identity to Ce-NSP-4, a pharyngeal cell-derived secreted metalloprotease of the nematode Caenorhabditis elegans. The predicted ORF contained a conserved Met-turn sequence (SXMHY), but only a partial zinc-binding signature sequence (GXXXEHXRXER instead of HEXXHXXGXXHEXXRXDR) found in other astacins. However, by both gelatin gel electrophoresis and azocasein digestion, the recombinant Ac-MTP-2 exhibited proteolytic activity that was inhibited by the zinc chelator 1,10-phenanthroline and Ac-TMP, a putative tissue inhibitor of metalloprotease that was previously shown to be a highly abundant component of adult A. caninum ES products. By RT-PCR, Western blot Ac-MTP-2 was found only expressed in adult hookworms and secreted in the adult ES products. Immunolocalization with antisera shows that Ac-MTP-2 is located to the esophageal glands (confirming its role as a secretory protein), as well as to the parasite uterus. It is hypothesized that Ac-MTP-2 functions in the extracorporeal digestion of the intestinal mucosal plug lodged in the buccal capsule of the adult parasite.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: