Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Increased clusterin expression in old but not young adult S100B transgenic mice: evidence of neuropathological aging in a model of Down Syndrome.

  • Lee A Shapiro‎ et al.
  • Brain research‎
  • 2004‎

S100B is a calcium-binding protein, localized to astroglial cells, which has a variety of neurotrophic functions, including roles in serotonergic neuronal growth, synaptogenesis dendritic branching and apoptosis. In humans, the gene for S100B is found on chromosome 21, within what is considered the obligate region for Down Syndrome (DS) and levels of S100B are increased in brain of both DS and Alzheimer's Disease (AD). We have been characterizing a transgenic mouse overexpressing this protein and have previously found evidence of pathological changes in brains of the mice. In the current study, we have examined the expression of clusterin, a protein expressed in aging neurons, in the mice at two ages. Our findings show increased clusterin expression in the aged S100B mice compared to their CD-1 controls, a finding we have interpreted as further evidence of pathological brain aging.


Developmental microglial priming in postmortem autism spectrum disorder temporal cortex.

  • Andrew S Lee‎ et al.
  • Brain, behavior, and immunity‎
  • 2017‎

Microglia can shift into different complex morphologies depending on the microenvironment of the central nervous system (CNS). The distinct morphologies correlate with specific functions and can indicate the pathophysiological state of the CNS. Previous postmortem studies of autism spectrum disorder (ASD) showed neuroinflammation in ASD indicated by increased microglial density. These changes in the microglia density can be accompanied by changes in microglia phenotype but the individual contribution of different microglia phenotypes to the pathophysiology of ASD remains unclear. Here, we used an unbiased stereological approach to quantify six structurally and functionally distinct microglia phenotypes in postmortem human temporal cortex, which were immuno-stained with Iba1. The total density of all microglia phenotypes did not differ between ASD donors and typically developing individual donors. However, there was a significant decrease in ramified microglia in both gray matter and white matter of ASD, and a significant increase in primed microglia in gray matter of ASD compared to typically developing individuals. This increase in primed microglia showed a positive correlation with donor age in both gray matter and white of ASD, but not in typically developing individuals. Our results provide evidence of a shift in microglial phenotype that may indicate impaired synaptic plasticity and a chronic vulnerability to exaggerated immune responses.


Increased serotonin axons (immunoreactive to 5-HT transporter) in postmortem brains from young autism donors.

  • Efrain C Azmitia‎ et al.
  • Neuropharmacology‎
  • 2011‎

Imaging studies of serotonin transporter binding or tryptophan retention in autistic patients suggest that the brain serotonin system is decreased. However, treatment with drugs which increase serotonin (5-HT) levels, specific serotonin reuptake inhibitors (SSRIs), commonly produce a worsening of the symptoms. In this study we examined 5-HT axons that were immunoreactive to a serotonin transporter (5-HTT) antibody in a number of postmortem brains from autistic patients and controls with no known diagnosis who ranged in age from 2 to 29 years. Fine, highly branched, and thick straight fibers were found in forebrain pathways (e.g. medial forebrain bundle, stria terminalis and ansa lenticularis). Many immunoreactive varicose fine fibers were seen in target areas (e.g. globus pallidus, amygdala and temporal cortex). Morphometric analysis of the stained axons at all ages studied indicated that the number of serotonin axons was increased in both pathways and terminal regions in cortex from autism donors. Our findings provide morphological evidence to warrant caution when using serotonin enhancing drugs (e.g. SSRIs and receptor agonist) to treat autistic children. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: