Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 35 papers

A high-resolution radiation hybrid map of chicken chromosome 5 and comparison with human chromosomes.

  • Frédérique Pitel‎ et al.
  • BMC genomics‎
  • 2004‎

The resolution of radiation hybrid (RH) maps is intermediate between that of the genetic and BAC (Bacterial Artificial Chromosome) contig maps. Moreover, once framework RH maps of a genome have been constructed, a quick location of markers by simple PCR on the RH panel is possible. The chicken ChickRH6 panel recently produced was used here to construct a high resolution RH map of chicken GGA5. To confirm the validity of the map and to provide valuable comparative mapping information, both markers from the genetic map and a high number of ESTs (Expressed Sequence Tags) were used. Finally, this RH map was used for testing the accuracy of the chicken genome assembly for chromosome 5.


Methods for interpreting lists of affected genes obtained in a DNA microarray experiment.

  • Jakob Hedegaard‎ et al.
  • BMC proceedings‎
  • 2009‎

The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence) and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding) workshop focusing on post analysis of microarray data. The participating groups were provided with identical lists of microarray probes, including test statistics for three different contrasts, and the normalised log-ratios for each array, to be used as the starting point for interpreting the affected probes. The data originated from a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria.


Analysis of BAC-end sequences in rainbow trout: content characterization and assessment of synteny between trout and other fish genomes.

  • Carine Genet‎ et al.
  • BMC genomics‎
  • 2011‎

Rainbow trout (Oncorhynchus mykiss) are cultivated worldwide for aquaculture production and are widely used as a model species to gain knowledge of many aspects of fish biology. The common ancestor of the salmonids experienced a whole genome duplication event, making extant salmonids such as the rainbow trout an excellent model for studying the evolution of tetraploidization and re-diploidization in vertebrates. However, the lack of a reference genome sequence hampers research progress for both academic and applied purposes. In order to enrich the genomic tools already available in this species and provide further insight on the complexity of its genome, we sequenced a large number of rainbow trout BAC-end sequences (BES) and characterized their contents.


Detection of a Cis [corrected] eQTL controlling BCMO1 gene expression leads to the identification of a QTG for chicken breast meat color.

  • Elisabeth Le Bihan-Duval‎ et al.
  • PloS one‎
  • 2011‎

Classical quantitative trait loci (QTL) analysis and gene expression QTL (eQTL) were combined to identify the causal gene (or QTG) underlying a highly significant QTL controlling the variation of breast meat color in a F2 cross between divergent high-growth (HG) and low-growth (LG) chicken lines. Within this meat quality QTL, BCMO1 (Accession number GenBank: AJ271386), encoding the β-carotene 15, 15'-monooxygenase, a key enzyme in the conversion of β-carotene into colorless retinal, was a good functional candidate. Analysis of the abundance of BCMO1 mRNA in breast muscle of the HG x LG F2 population allowed for the identification of a strong cis eQTL. Moreover, reevaluation of the color QTL taking BCMO1 mRNA levels as a covariate indicated that BCMO1 mRNA levels entirely explained the variations in meat color. Two fully-linked single nucleotide polymorphisms (SNP) located within the proximal promoter of BCMO1 gene were identified. Haplotype substitution resulted in a marked difference in BCMO1 promoter activity in vitro. The association study in the F2 population revealed a three-fold difference in BCMO1 expression leading to a difference of 1 standard deviation in yellow color between the homozygous birds at this haplotype. This difference in meat yellow color was fully consistent with the difference in carotenoid content (i.e. lutein and zeaxanthin) evidenced between the two alternative haplotypes. A significant association between the haplotype, the level of BCMO1 expression and the yellow color of the meat was also recovered in an unrelated commercial broiler population. The mutation could be of economic importance for poultry production by making possible a gene-assisted selection for color, a determining aspect of meat quality. Moreover, this natural genetic diversity constitutes a new model for the study of β-carotene metabolism which may act upon diverse biological processes as precursor of the vitamin A.


Re-sequencing data for refining candidate genes and polymorphisms in QTL regions affecting adiposity in chicken.

  • Pierre-François Roux‎ et al.
  • PloS one‎
  • 2014‎

In this study, we propose an approach aiming at fine-mapping adiposity QTL in chicken, integrating whole genome re-sequencing data. First, two QTL regions for adiposity were identified by performing a classical linkage analysis on 1362 offspring in 11 sire families obtained by crossing two meat-type chicken lines divergently selected for abdominal fat weight. Those regions, located on chromosome 7 and 19, contained a total of 77 and 84 genes, respectively. Then, SNPs and indels in these regions were identified by re-sequencing sires. Considering issues related to polymorphism annotations for regulatory regions, we focused on the 120 and 104 polymorphisms having an impact on protein sequence, and located in coding regions of 35 and 42 genes situated in the two QTL regions. Subsequently, a filter was applied on SNPs considering their potential impact on the protein function based on conservation criteria. For the two regions, we identified 42 and 34 functional polymorphisms carried by 18 and 24 genes, and likely to deeply impact protein, including 3 coding indels and 4 nonsense SNPs. Finally, using gene functional annotation, a short list of 17 and 4 polymorphisms in 6 and 4 functional genes has been defined. Even if we cannot exclude that the causal polymorphisms may be located in regulatory regions, this strategy gives a complete overview of the candidate polymorphisms in coding regions and prioritize them on conservation- and functional-based arguments.


Analyses of pig genomes provide insight into porcine demography and evolution.

  • Martien A M Groenen‎ et al.
  • Nature‎
  • 2012‎

For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ∼1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.


Long noncoding RNAs in lipid metabolism: literature review and conservation analysis across species.

  • Kevin Muret‎ et al.
  • BMC genomics‎
  • 2019‎

Lipids are important for the cell and organism life since they are major components of membranes, energy reserves and are also signal molecules. The main organs for the energy synthesis and storage are the liver and adipose tissue, both in humans and in more distant species such as chicken. Long noncoding RNAs (lncRNAs) are known to be involved in many biological processes including lipid metabolism.


Watch Out for a Second SNP: Focus on Multi-Nucleotide Variants in Coding Regions and Rescued Stop-Gained.

  • Fabien Degalez‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Most single-nucleotide polymorphisms (SNPs) are located in non-coding regions, but the fraction usually studied is harbored in protein-coding regions because potential impacts on proteins are relatively easy to predict by popular tools such as the Variant Effect Predictor. These tools annotate variants independently without considering the potential effect of grouped or haplotypic variations, often called "multi-nucleotide variants" (MNVs). Here, we used a large RNA-seq dataset to survey MNVs, comprising 382 chicken samples originating from 11 populations analyzed in the companion paper in which 9.5M SNPs- including 3.3M SNPs with reliable genotypes-were detected. We focused our study on in-codon MNVs and evaluate their potential mis-annotation. Using GATK HaplotypeCaller read-based phasing results, we identified 2,965 MNVs observed in at least five individuals located in 1,792 genes. We found 41.1% of them showing a novel impact when compared to the effect of their constituent SNPs analyzed separately. The biggest impact variation flux concerns the originally annotated stop-gained consequences, for which around 95% were rescued; this flux is followed by the missense consequences for which 37% were reannotated with a different amino acid. We then present in more depth the rescued stop-gained MNVs and give an illustration in the SLC27A4 gene. As previously shown in human datasets, our results in chicken demonstrate the value of haplotype-aware variant annotation, and the interest to consider MNVs in the coding region, particularly when searching for severe functional consequence such as stop-gained variants.


Maternal High-Protein and Low-Protein Diets Perturb Hypothalamus and Liver Transcriptome and Metabolic Homeostasis in Adult Mouse Offspring.

  • Lisa J Martin‎ et al.
  • Frontiers in genetics‎
  • 2018‎

Early life nutritional imbalances are risk factors for metabolic dysfunctions in adulthood, but the long term effects of perinatal exposure to high versus low protein diets are not completely understood. We exposed C57BL/6J offspring to a high protein/low carbohydrate (HP/LC) or low protein/high carbohydrate (LP/HC) diet during gestation and lactation, and measured metabolic phenotypes between birth and 10 months of age in male offspring. Perinatal HP/LC and LP/HC exposures resulted in a decreased ability to clear glucose in the offspring, with reduced baseline insulin and glucose concentrations in the LP/HC group and a reduced insulin response post-glucose challenge in the HP/LC group. The LP/HC diet group also showed reduced birth and weanling weights, whereas the HP/LC offspring displayed increased weanling weight with increased adiposity beyond 5 months of age. Gene expression profiling of hypothalamus and liver revealed alterations in diverse molecular pathways by both diets. Specifically, hypothalamic transcriptome and pathway analyses demonstrated perturbations of MAPK and hedgehog signaling, processes associated with neural restructuring and transmission, and phosphate metabolism by perinatal protein imbalances. Liver transcriptomics revealed changes in purine and phosphate metabolism, hedgehog signaling, and circadian rhythm pathways. Our results indicate maternal protein imbalances perturbing molecular pathways in central and peripheral metabolic tissues, thereby predisposing the male offspring to metabolic dysfunctions.


Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD.

  • Alexandra Montagner‎ et al.
  • Gut‎
  • 2016‎

Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor expressed in tissues with high oxidative activity that plays a central role in metabolism. In this work, we investigated the effect of hepatocyte PPARα on non-alcoholic fatty liver disease (NAFLD).


Molecular alterations induced by a high-fat high-fiber diet in porcine adipose tissues: variations according to the anatomical fat location.

  • Florence Gondret‎ et al.
  • BMC genomics‎
  • 2016‎

Changing the energy and nutrient source for growing animals may be an effective way of limiting adipose tissue expansion, a response which may depend on the genetic background of the animals. This study aims to describe the transcriptional modulations present in the adipose tissues of two pig lines divergently selected for residual feed intake which were either fed a high-fat high-fiber (HF) diet or an isocaloric low-fat high-starch diet (LF).


Using transcriptome profiling to characterize QTL regions on chicken chromosome 5.

  • Guillaume Le Mignon‎ et al.
  • BMC genomics‎
  • 2009‎

Although many QTL for various traits have been mapped in livestock, location confidence intervals remain wide that makes difficult the identification of causative mutations. The aim of this study was to test the contribution of microarray data to QTL detection in livestock species. Three different but complementary approaches are proposed to improve characterization of a chicken QTL region for abdominal fatness (AF) previously detected on chromosome 5 (GGA5).


The Extent of mRNA Editing Is Limited in Chicken Liver and Adipose, but Impacted by Tissular Context, Genotype, Age, and Feeding as Exemplified with a Conserved Edited Site in COG3.

  • Pierre-François Roux‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2015‎

RNA editing is a posttranscriptional process leading to differences between genomic DNA and transcript sequences, potentially enhancing transcriptome diversity. With recent advances in high-throughput sequencing, many efforts have been made to describe mRNA editing at the transcriptome scale, especially in mammals, yielding contradictory conclusions regarding the extent of this phenomenon. We show, by detailed description of the 25 studies focusing so far on mRNA editing at the whole-transcriptome scale, that systematic sequencing artifacts are considered in most studies whereas biological replication is often neglected and multi-alignment not properly evaluated, which ultimately impairs the legitimacy of results. We recently developed a rigorous strategy to identify mRNA editing using mRNA and genomic DNA sequencing, taking into account sequencing and mapping artifacts, and biological replicates. We applied this method to screen for mRNA editing in liver and white adipose tissue from eight chickens and confirm the small extent of mRNA recoding in this species. Among the 25 unique edited sites identified, three events were previously described in mammals, attesting that this phenomenon is conserved throughout evolution. Deeper investigations on five sites revealed the impact of tissular context, genotype, age, feeding conditions, and sex on mRNA editing levels. More specifically, this analysis highlighted that the editing level at the site located on COG3 was strongly regulated by four of these factors. By comprehensively characterizing the mRNA editing landscape in chickens, our results highlight how this phenomenon is limited and suggest regulation of editing levels by various genetic and environmental factors.


Multi-species annotation of transcriptome and chromatin structure in domesticated animals.

  • Sylvain Foissac‎ et al.
  • BMC biology‎
  • 2019‎

Comparative genomics studies are central in identifying the coding and non-coding elements associated with complex traits, and the functional annotation of genomes is a critical step to decipher the genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes (FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples related to metabolism (liver) and immunity (CD4+ and CD8+ T cells).


A medium density genetic map and QTL for behavioral and production traits in Japanese quail.

  • Julien Recoquillay‎ et al.
  • BMC genomics‎
  • 2015‎

Behavioral traits such as sociability, emotional reactivity and aggressiveness are major factors in animal adaptation to breeding conditions. In order to investigate the genetic control of these traits as well as their relationships with production traits, a study was undertaken on a large second generation cross (F2) between two lines of Japanese Quail divergently selected on their social reinstatement behavior. All the birds were measured for several social behaviors (social reinstatement, response to social isolation, sexual motivation, aggression), behaviors measuring the emotional reactivity of the birds (reaction to an unknown object, tonic immobility reaction), and production traits (body weight and egg production).


SigReannot-mart: a query environment for expression microarray probe re-annotations.

  • François Moreews‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2011‎

Expression microarrays are commonly used to study transcriptomes. Most of the arrays are now based on oligo-nucleotide probes. Probe design being a tedious task, it often takes place once at the beginning of the project. The oligo set is then used for several years. During this time period, the knowledge gathered by the community on the genome and the transcriptome increases and gets more precise. Therefore re-annotating the set is essential to supply the biologists with up-to-date annotations. SigReannot-mart is a query environment populated with regularly updated annotations for different oligo sets. It stores the results of the SigReannot pipeline that has mainly been used on farm and aquaculture species. It permits easy extraction in different formats using filters. It is used to compare probe sets on different criteria, to choose the set for a given experiment to mix probe sets in order to create a new one.


Transcriptome-wide investigation of genomic imprinting in chicken.

  • Laure Frésard‎ et al.
  • Nucleic acids research‎
  • 2014‎

Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken.


RNA-Seq Data for Reliable SNP Detection and Genotype Calling: Interest for Coding Variant Characterization and Cis-Regulation Analysis by Allele-Specific Expression in Livestock Species.

  • Frédéric Jehl‎ et al.
  • Frontiers in genetics‎
  • 2021‎

In addition to their common usages to study gene expression, RNA-seq data accumulated over the last 10 years are a yet-unexploited resource of SNPs in numerous individuals from different populations. SNP detection by RNA-seq is particularly interesting for livestock species since whole genome sequencing is expensive and exome sequencing tools are unavailable. These SNPs detected in expressed regions can be used to characterize variants affecting protein functions, and to study cis-regulated genes by analyzing allele-specific expression (ASE) in the tissue of interest. However, gene expression can be highly variable, and filters for SNP detection using the popular GATK toolkit are not yet standardized, making SNP detection and genotype calling by RNA-seq a challenging endeavor. We compared SNP calling results using GATK suggested filters, on two chicken populations for which both RNA-seq and DNA-seq data were available for the same samples of the same tissue. We showed, in expressed regions, a RNA-seq precision of 91% (SNPs detected by RNA-seq and shared by DNA-seq) and we characterized the remaining 9% of SNPs. We then studied the genotype (GT) obtained by RNA-seq and the impact of two factors (GT call-rate and read number per GT) on the concordance of GT with DNA-seq; we proposed thresholds for them leading to a 95% concordance. Applying these thresholds to 767 multi-tissue RNA-seq of 382 birds of 11 chicken populations, we found 9.5 M SNPs in total, of which ∼550,000 SNPs per tissue and population with a reliable GT (call rate ≥ 50%) and among them, ∼340,000 with a MAF ≥ 10%. We showed that such RNA-seq data from one tissue can be used to (i) detect SNPs with a strong predicted impact on proteins, despite their scarcity in each population (16,307 SIFT deleterious missenses and 590 stop-gained), (ii) study, on a large scale, cis-regulations of gene expression, with ∼81% of protein-coding and 68% of long non-coding genes (TPM ≥ 1) that can be analyzed for ASE, and with ∼29% of them that were cis-regulated, and (iii) analyze population genetic using such SNPs located in expressed regions. This work shows that RNA-seq data can be used with good confidence to detect SNPs and associated GT within various populations and used them for different analyses as GTEx studies.


LncRNAs in domesticated animals: from dog to livestock species.

  • Sandrine Lagarrigue‎ et al.
  • Mammalian genome : official journal of the International Mammalian Genome Society‎
  • 2022‎

Animal genomes are pervasively transcribed into multiple RNA molecules, of which many will not be translated into proteins. One major component of this transcribed non-coding genome is the long non-coding RNAs (lncRNAs), which are defined as transcripts longer than 200 nucleotides with low coding-potential capabilities. Domestic animals constitute a unique resource for studying the genetic and epigenetic basis of phenotypic variations involving protein-coding and non-coding RNAs, such as lncRNAs. This review presents the current knowledge regarding transcriptome-based catalogues of lncRNAs in major domesticated animals (pets and livestock species), covering a broad phylogenetic scale (from dogs to chicken), and in comparison with human and mouse lncRNA catalogues. Furthermore, we describe different methods to extract known or discover novel lncRNAs and explore comparative genomics approaches to strengthen the annotation of lncRNAs. We then detail different strategies contributing to a better understanding of lncRNA functions, from genetic studies such as GWAS to molecular biology experiments and give some case examples in domestic animals. Finally, we discuss the limitations of current lncRNA annotations and suggest research directions to improve them and their functional characterisation.


Long noncoding RNA repertoire in chicken liver and adipose tissue.

  • Kévin Muret‎ et al.
  • Genetics, selection, evolution : GSE‎
  • 2017‎

Improving functional annotation of the chicken genome is a key challenge in bridging the gap between genotype and phenotype. Among all transcribed regions, long noncoding RNAs (lncRNAs) are a major component of the transcriptome and its regulation, and whole-transcriptome sequencing (RNA-Seq) has greatly improved their identification and characterization. We performed an extensive profiling of the lncRNA transcriptome in the chicken liver and adipose tissue by RNA-Seq. We focused on these two tissues because of their importance in various economical traits for which energy storage and mobilization play key roles and also because of their high cell homogeneity. To predict lncRNAs, we used a recently developed tool called FEELnc, which also classifies them with respect to their distance and strand orientation to the closest protein-coding genes. Moreover, to confidently identify the genes/transcripts expressed in each tissue (a complex task for weakly expressed molecules such as lncRNAs), we probed a particularly large number of biological replicates (16 per tissue) compared to common multi-tissue studies with a larger set of tissues but less sampling.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: