Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Primary graft function, metabolic control, and graft survival after islet transplantation.

  • Marie-Christine Vantyghem‎ et al.
  • Diabetes care‎
  • 2009‎

OBJECTIVE To investigate the influence of primary graft function (PGF) on graft survival and metabolic control after islet transplantation with the Edmonton protocol. RESEARCH DESIGN AND METHODS A total of 14 consecutive patients with brittle type 1 diabetes were enrolled in this phase 2 study and received median 12,479 islet equivalents per kilogram of body weight (interquartile range 11,072-15,755) in two or three sequential infusions within 67 days (44-95). PGF was estimated 1 month after the last infusion by the beta-score, a previously validated index (range 0-8) based on insulin or oral treatment requirements, plasma C-peptide, blood glucose, and A1C. Primary outcome was graft survival, defined as insulin independence with A1C < or =6.5%. RESULTS All patients gained insulin independence within 12 days (6-23) after the last infusion. PGF was optimal (beta-score > or =7) in nine patients and suboptimal (beta-score < or =6) in five. At last follow-up, 3.3 years (2.8-4.0) after islet transplantation, eight patients (57%) remained insulin independent with A1C < or =6.5%, including seven patients with optimal PGF (78%) and one with suboptimal PGF (20%) (P = 0.01, log-rank test). Graft survival was not significantly influenced by HLA mismatches or by preexisting islet autoantibodies. A1C, mean glucose, glucose variability (assessed with continuous glucose monitoring system), and glucose tolerance (using an oral glucose tolerance test) were markedly improved when compared with baseline values and were significantly lower in patients with optimal PGF than in those with suboptimal PGF. CONCLUSIONS Optimal PGF was associated with prolonged graft survival and better metabolic control after islet transplantation. This early outcome may represent a valuable end point in future clinical trials.


Beneficial effects of varicocele embolization on semen parameters.

  • Julie Prasivoravong‎ et al.
  • Basic and clinical andrology‎
  • 2014‎

The value of varicocele repair and the latter's impact on semen parameters are still subject to debate.


Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process.

  • Nour El Houda Mimouni‎ et al.
  • Cell metabolism‎
  • 2021‎

Polycystic ovary syndrome (PCOS) is the most common reproductive and metabolic disorder affecting women of reproductive age. PCOS has a strong heritable component, but its pathogenesis has been unclear. Here, we performed RNA sequencing and genome-wide DNA methylation profiling of ovarian tissue from control and third-generation PCOS-like mice. We found that DNA hypomethylation regulates key genes associated with PCOS and that several of the differentially methylated genes are also altered in blood samples from women with PCOS compared with healthy controls. Based on this insight, we treated the PCOS mouse model with the methyl group donor S-adenosylmethionine and found that it corrected their transcriptomic, neuroendocrine, and metabolic defects. These findings show that the transmission of PCOS traits to future generations occurs via an altered landscape of DNA methylation and propose methylome markers as a possible diagnostic landmark for the condition, while also identifying potential candidates for epigenetic-based therapy.


Defective AMH signaling disrupts GnRH neuron development and function and contributes to hypogonadotropic hypogonadism.

  • Samuel Andrew Malone‎ et al.
  • eLife‎
  • 2019‎

Congenital hypogonadotropic hypogonadism (CHH) is a condition characterized by absent puberty and infertility due to gonadotropin releasing hormone (GnRH) deficiency, which is often associated with anosmia (Kallmann syndrome, KS). We identified loss-of-function heterozygous mutations in anti-Müllerian hormone (AMH) and its receptor, AMHR2, in 3% of CHH probands using whole-exome sequencing. We showed that during embryonic development, AMH is expressed in migratory GnRH neurons in both mouse and human fetuses and unconvered a novel function of AMH as a pro-motility factor for GnRH neurons. Pathohistological analysis of Amhr2-deficient mice showed abnormal development of the peripheral olfactory system and defective embryonic migration of the neuroendocrine GnRH cells to the basal forebrain, which results in reduced fertility in adults. Our findings highlight a novel role for AMH in the development and function of GnRH neurons and indicate that AMH signaling insufficiency contributes to the pathogenesis of CHH in humans.


Galectin-3 modulates epithelial cell adaptation to stress at the ER-mitochondria interface.

  • Lucie Coppin‎ et al.
  • Cell death & disease‎
  • 2020‎

Cellular stress response contributes to epithelial defense in adaptation to environment changes. Galectins play a pivotal role in the regulation of this response in malignant cells. However, precise underlying mechanisms are largely unknown. Here we demonstrate that Galectin-3, a pro and anti-apoptotic lectin, is required for setting up a correct cellular response to stress by orchestrating several effects. First, Galectin-3 constitutes a key post-transcriptional regulator of stress-related mRNA regulons coordinating the cell metabolism, the mTORC1 complex or the unfolded protein response (UPR). Moreover, we demonstrated the presence of Galectin-3 with mitochondria-associated membranes (MAM), and its interaction with proteins located at the ER or mitochondrial membranes. There Galectin-3 prevents the activation and recruitment at the mitochondria of the regulator of mitochondria fission DRP-1. Accordingly, loss of Galectin-3 impairs mitochondrial morphology, with more fragmented and round mitochondria, and dynamics both in normal and cancer epithelial cells in basal conditions. Importantly, Galectin-3 deficient cells also display changes of the activity of the mitochondrial respiratory chain complexes, of the mTORC1/S6RP/4EBP1 translation pathway and reactive oxygen species levels. Regarding the ER, Galectin-3 did not modify the activities of the 3 branches of the UPR in basal conditions. However, Galectin-3 favours an adaptative UPR following ER stress induction by Thapsigargin treatment. Altogether, at the ER-mitochondria interface, Galectin-3 coordinates the functioning of the ER and mitochondria, preserves the integrity of mitochondrial network and modulates the ER stress response.


Repression of PLA2R1 by c-MYC and HIF-2alpha promotes cancer growth.

  • David Vindrieux‎ et al.
  • Oncotarget‎
  • 2014‎

Loss of secreted phospholipase A2 receptor (PLA2R1) has recently been found to render human primary cells more resistant to senescence whereas increased PLA2R1 expression is able to induce cell cycle arrest, cancer cell death or blockage of cancer cell transformation in vitro, suggesting that PLA2R1 displays tumor suppressive activities. Here we report that PLA2R1 expression strongly decreases in samples of human renal cell carcinoma (RCC). Knockdown of PLA2R1 increases renal cancer cell tumorigenicity supporting a role of PLA2R1 loss to promote in vivo RCC growth. Most RCC result from Von Hippel-Lindau (VHL) tumor suppressor loss-of-function and subsequent gain-of-function of the oncogenic HIF-2alpha/c-MYC pathway. Here, by genetically manipulating VHL, HIF-2alpha and c-MYC, we demonstrate that loss of VHL, stabilization of HIF-2alpha and subsequent increased c-MYC activity, binding and transcriptional repression, through induction of PLA2R1 DNA methylation closed to PLA2R1 transcriptional start site, results in decreased PLA2R1 transcription. Our results describe for the first time an oncogenic pathway leading to PLA2R1 transcriptional repression and the importance of this repression for tumor growth.


Detrimental effects of diet-induced obesity on τ pathology are independent of insulin resistance in τ transgenic mice.

  • Antoine Leboucher‎ et al.
  • Diabetes‎
  • 2013‎

The τ pathology found in Alzheimer disease (AD) is crucial in cognitive decline. Midlife development of obesity, a major risk factor of insulin resistance and type 2 diabetes, increases the risk of dementia and AD later in life. The impact of obesity on AD risk has been suggested to be related to central insulin resistance, secondary to peripheral insulin resistance. The effects of diet-induced obesity (DIO) on τ pathology remain unknown. In this study, we evaluated effects of a high-fat diet, given at an early pathological stage, in the THY-Tau22 transgenic mouse model of progressive AD-like τ pathology. We found that early and progressive obesity potentiated spatial learning deficits as well as hippocampal τ pathology at a later stage. Surprisingly, THY-Tau22 mice did not exhibit peripheral insulin resistance. Further, pathological worsening occurred while hippocampal insulin signaling was upregulated. Together, our data demonstrate that DIO worsens τ phosphorylation and learning abilities in τ transgenic mice independently from peripheral/central insulin resistance.


International initiative for a curated SDHB variant database improving the diagnosis of hereditary paraganglioma and pheochromocytoma.

  • Laurene Ben Aim‎ et al.
  • Journal of medical genetics‎
  • 2022‎

SDHB is one of the major genes predisposing to paraganglioma/pheochromocytoma (PPGL). Identifying pathogenic SDHB variants in patients with PPGL is essential to the management of patients and relatives due to the increased risk of recurrences, metastases and the emergence of non-PPGL tumours. In this context, the 'NGS and PPGL (NGSnPPGL) Study Group' initiated an international effort to collect, annotate and classify SDHB variants and to provide an accurate, expert-curated and freely available SDHB variant database.


Different patterns of ovarian recovery after cancer treatment suggest various individual ovarian susceptibilities to chemotherapy.

  • Christine Decanter‎ et al.
  • Reproductive biomedicine online‎
  • 2018‎

The relationship between early recovery of menstrual activity and blood anti-Müllerian hormone (AMH) concentrations were investigated within the first year post-chemotherapy in 32 young patients with breast cancer. All were treated by surgery and the same chemotherapy protocol (three cycles of FEC100 plus three cycles of taxanes). Menstrual activity, blood AMH (using picoAMH ELISA) and FSH concentrations were measured longitudinally before, during and up to 12 months after the end of chemotherapy (six samples per patient). Among the cohort, 17 patients recovered spontaneous cycles at +6 months (fast recovery) whereas the remaining 15 patients were still amenorrheic at that time (slow recovery). Blood AMH differed between these two subgroups at each time of the recovery phase starting at 3 months post-chemotherapy. The AMH patterns were also different: rapid and large increase in the fast recovery versus slow and partial increase in the slow recovery subgroup. No difference in ovarian recovery was observed between patients with a hormone positive or negative tumour. In conclusion, studying the post-chemotherapy patterns of menstrual activity and AMH, two paces of early ovarian recovery are distinguishable in young breast cancer patients who received the same chemotherapy protocol. This suggests different individual ovarian susceptibilities to chemotherapy.


Genetic predisposition to neural crest-derived tumors: revisiting the role of KIF1B.

  • Catherine Cardot Bauters‎ et al.
  • Endocrine connections‎
  • 2020‎

We previously described a family in which predisposition to pheochromocytoma (PCC) segregates with a germline heterozygous KIF1B nucleotide variant (c.4442G>A, p.Ser1481Asn) in three generations. During the clinical follow-up, one proband's brother, negative for the KIF1B nucleotide variant, developed a bilateral PCC at 31 years. This prompted us to reconsider the genetic analysis.


Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion.

  • Irene Cimino‎ et al.
  • Nature communications‎
  • 2016‎

Anti-Müllerian hormone (AMH) plays crucial roles in sexual differentiation and gonadal functions. However, the possible extragonadal effects of AMH on the hypothalamic-pituitary-gonadal axis remain unexplored. Here we demonstrate that a significant subset of GnRH neurons both in mice and humans express the AMH receptor, and that AMH potently activates the GnRH neuron firing in mice. Combining in vivo and in vitro experiments, we show that AMH increases GnRH-dependent LH pulsatility and secretion, supporting a central action of AMH on GnRH neurons. Increased LH pulsatility is an important pathophysiological feature in many cases of polycystic ovary syndrome (PCOS), the most common cause of female infertility, in which circulating AMH levels are also often elevated. However, the origin of this dysregulation remains unknown. Our findings raise the intriguing hypothesis that AMH-dependent regulation of GnRH release could be involved in the pathophysiology of fertility and could hold therapeutic potential for treating PCOS.


Galectin-3 is a non-classic RNA binding protein that stabilizes the mucin MUC4 mRNA in the cytoplasm of cancer cells.

  • Lucie Coppin‎ et al.
  • Scientific reports‎
  • 2017‎

Pancreatic cancer cells express high levels of MUC1, MUC4 and MUC16 mRNAs that encode membrane-bound mucins. These mRNAs share unusual features such as a long half-life. However, it remains unknown how mucin mRNA stability is regulated. Galectin-3 (Gal-3) is an endogenous lectin playing important biological functions in epithelial cells. Gal-3 is encoded by LGALS3 which is up-regulated in pancreatic cancer. Despite the absence of a RNA-recognition motif, Gal-3 interacts indirectly with pre-mRNAs in the nucleus and promotes constitutive splicing. However a broader role of Gal-3 in mRNA fate is unexplored. We report herein that Gal-3 increases MUC4 mRNA stability through an intermediate, hnRNP-L which binds to a conserved CA repeat element in the 3'UTR in a Gal-3 dependent manner and also controls Muc4 mRNA levels in epithelial tissues of Gal3-/- mice. Gal-3 interacts with hnRNP-L in the cytoplasm, especially during cell mitosis, but only partly associates with protein markers of P-Bodies or Stress Granules. By RNA-IP plus RNA-seq analysis and imaging, we demonstrate that Gal-3 binds to mature spliced MUC4 mRNA in the perinuclear region, probably in hnRNP-L-containing RNA granules. Our findings highlight a new role for Gal-3 as a non-classic RNA-binding protein that regulates MUC4 mRNA post-transcriptionally.


Long-COVID cognitive impairments and reproductive hormone deficits in men may stem from GnRH neuronal death.

  • Florent Sauve‎ et al.
  • EBioMedicine‎
  • 2023‎

We have recently demonstrated a causal link between loss of gonadotropin-releasing hormone (GnRH), the master molecule regulating reproduction, and cognitive deficits during pathological aging, including Down syndrome and Alzheimer's disease. Olfactory and cognitive alterations, which persist in some COVID-19 patients, and long-term hypotestosteronaemia in SARS-CoV-2-infected men are also reminiscent of the consequences of deficient GnRH, suggesting that GnRH system neuroinvasion could underlie certain post-COVID symptoms and thus lead to accelerated or exacerbated cognitive decline.


A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas.

  • Patricia L M Dahia‎ et al.
  • PLoS genetics‎
  • 2005‎

Pheochromocytomas are neural crest-derived tumors that arise from inherited or sporadic mutations in at least six independent genes. The proteins encoded by these multiple genes regulate distinct functions. We show here a functional link between tumors with VHL mutations and those with disruption of the genes encoding for succinate dehydrogenase (SDH) subunits B (SDHB) and D (SDHD). A transcription profile of reduced oxidoreductase is detected in all three of these tumor types, together with an angiogenesis/hypoxia profile typical of VHL dysfunction. The oxidoreductase defect, not previously detected in VHL-null tumors, is explained by suppression of the SDHB protein, a component of mitochondrial complex II. The decrease in SDHB is also noted in tumors with SDHD mutations. Gain-of-function and loss-of-function analyses show that the link between hypoxia signals (via VHL) and mitochondrial signals (via SDH) is mediated by HIF1alpha. These findings explain the shared features of pheochromocytomas with VHL and SDH mutations and suggest an additional mechanism for increased HIF1alpha activity in tumors.


Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood.

  • Brooke Tata‎ et al.
  • Nature medicine‎
  • 2018‎

Polycystic ovary syndrome (PCOS) is the main cause of female infertility worldwide and corresponds with a high degree of comorbidities and economic burden. How PCOS is passed on from one generation to the next is not clear, but it may be a developmental condition. Most women with PCOS exhibit higher levels of circulating luteinizing hormone, suggestive of heightened gonadotropin-releasing hormone (GnRH) release, and anti-Müllerian hormone (AMH) as compared to healthy women. Excess AMH in utero may affect the development of the female fetus. However, as AMH levels drop during pregnancy in women with normal fertility, it was unclear whether their levels were also elevated in pregnant women with PCOS. Here we measured AMH in a cohort of pregnant women with PCOS and control pregnant women and found that AMH is significantly more elevated in the former group versus the latter. To determine whether the elevation of AMH during pregnancy in women with PCOS is a bystander effect or a driver of the condition in the offspring, we modeled our clinical findings by treating pregnant mice with AMH and followed the neuroendocrine phenotype of their female progeny postnatally. This treatment resulted in maternal neuroendocrine-driven testosterone excess and diminished placental metabolism of testosterone to estradiol, resulting in a masculinization of the exposed female fetus and a PCOS-like reproductive and neuroendocrine phenotype in adulthood. We found that the affected females had persistently hyperactivated GnRH neurons and that GnRH antagonist treatment in the adult female offspring restored their neuroendocrine phenotype to a normal state. These findings highlight a critical role for excess prenatal AMH exposure and subsequent aberrant GnRH receptor signaling in the neuroendocrine dysfunctions of PCOS, while offering a new potential therapeutic avenue to treat the condition during adulthood.


Defining Reference Ranges for Serum Anti-Müllerian Hormone on a Large Cohort of Normozoospermic Adult Men Highlights New Potential Physiological Functions of AMH on FSH Secretion and Sperm Motility.

  • Hamza Benderradji‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2022‎

Few studies to date have attempted to measure serum anti-Müllerian hormone (AMH) levels in adult men, and solid references ranges have not yet been defined in a large cohort.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: