Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 44 papers

Appoptosin-Mediated Caspase Cleavage of Tau Contributes to Progressive Supranuclear Palsy Pathogenesis.

  • Yingjun Zhao‎ et al.
  • Neuron‎
  • 2015‎

Progressive supranuclear palsy (PSP) is a movement disorder characterized by tau neuropathology where the underlying mechanism is unknown. An SNP (rs1768208 C/T) has been identified as a strong risk factor for PSP. Here, we identified a much higher T-allele occurrence and increased levels of the pro-apoptotic protein appoptosin in PSP patients. Elevations in appoptosin correlate with activated caspase-3 and caspase-cleaved tau levels. Appoptosin overexpression increased caspase-mediated tau cleavage, tau aggregation, and synaptic dysfunction, whereas appoptosin deficiency reduced tau cleavage and aggregation. Appoptosin transduction impaired multiple motor functions and exacerbated neuropathology in tau-transgenic mice in a manner dependent on caspase-3 and tau. Increased appoptosin and caspase-3-cleaved tau were also observed in brain samples of patients with Alzheimer's disease and frontotemporal dementia with tau inclusions. Our findings reveal a novel role for appoptosin in neurological disorders with tau neuropathology, linking caspase-3-mediated tau cleavage to synaptic dysfunction and behavioral/motor defects.


Motor neuron loss and neuroinflammation in a model of α-synuclein-induced neurodegeneration.

  • Zachary A Sorrentino‎ et al.
  • Neurobiology of disease‎
  • 2018‎

Mechanisms underlying α-synuclein (αSyn) mediated neurodegeneration are poorly understood. Intramuscular (IM) injection of αSyn fibrils in human A53T transgenic M83+/- mice produce a rapid model of α-synucleinopathy with highly predictable onset of motor impairment. Using varying doses of αSyn seeds, we show that αSyn-induced phenotype is largely dose-independent. We utilized the synchrony of this IM model to explore the temporal sequence of αSyn pathology, neurodegeneration and neuroinflammation. Longitudinal tracking showed that while motor neuron death and αSyn pathology occur within 2 months post IM, astrogliosis appears at a later timepoint, implying neuroinflammation is a consequence, rather than a trigger, in this prionoid model of synucleinopathy. Initiating at 3 months post IM, immune activation dominates the pathologic landscape in terminal IM-seeded M83+/- mice, as revealed by unbiased transcriptomic analyses. Our findings provide insights into the role of neuroinflammation in αSyn mediated proteostasis and neurodegeneration, which will be key in designing potential therapies.


Normal cognition in transgenic BRI2-Aβ mice.

  • Jungsu Kim‎ et al.
  • Molecular neurodegeneration‎
  • 2013‎

Recent research in Alzheimer's disease (AD) field has been focused on the potential role of the amyloid-β protein that is derived from the transmembrane amyloid precursor protein (APP) in directly mediating cognitive impairment in AD. Transgenic mouse models overexpressing APP develop robust AD-like amyloid pathology in the brain and show various levels of cognitive decline. In the present study, we examined the cognition of the BRI2-Aβ transgenic mouse model in which secreted extracellular Aβ1-40, Aβ1-42 or both Aβ1-40/Aβ1-42 peptides are generated from the BRI-Aβ fusion proteins encoded by the transgenes. BRI2-Aβ mice produce high levels of Aβ peptides and BRI2-Aβ1-42 mice develop amyloid pathology that is similar to the pathology observed in mutant human APP transgenic models.


Integrative approach to sporadic Alzheimer's disease: deficiency of TYROBP in a tauopathy mouse model reduces C1q and normalizes clinical phenotype while increasing spread and state of phosphorylation of tau.

  • Mickael Audrain‎ et al.
  • Molecular psychiatry‎
  • 2019‎

TYROBP/DAP12 forms complexes with ectodomains of immune receptors (TREM2, SIRPβ1, CR3) associated with Alzheimer's disease (AD) and is a network hub and driver in the complement subnetwork identified by multi-scale gene network studies of postmortem human AD brain. Using transgenic or viral approaches, we characterized in mice the effects of TYROBP deficiency on the phenotypic and pathological evolution of tauopathy. Biomarkers usually associated with worsening clinical phenotype (i.e., hyperphosphorylation and increased tauopathy spreading) were unexpectedly increased in MAPTP301S;Tyrobp-/- mice despite the improved learning behavior and synaptic function relative to controls with normal levels of TYROBP. Notably, levels of complement cascade initiator C1q were reduced in MAPTP301S;Tyrobp-/- mice, consistent with the prediction that C1q reduction exerts a neuroprotective effect. These observations suggest a model wherein TYROBP-KO-(knock-out)-associated reduction in C1q is associated with normalized learning behavior and electrophysiological properties in tauopathy model mice despite a paradoxical evolution of biomarker signatures usually associated with neurological decline.


α-Synuclein Induces Progressive Changes in Brain Microstructure and Sensory-Evoked Brain Function That Precedes Locomotor Decline.

  • Winston T Chu‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2020‎

In vivo functional and structural brain imaging of synucleinopathies in humans have provided a rich new understanding of the affected networks across the cortex and subcortex. Despite this progress, the temporal relationship between α-synuclein (α-syn) pathology and the functional and structural changes occurring in the brain is not well understood. Here, we examine the temporal relationship between locomotor ability, brain microstructure, functional brain activity, and α-syn pathology by longitudinally conducting rotarod, diffusion magnetic resonance imaging (MRI), resting-state functional MRI (fMRI), and sensory-evoked fMRI on 20 mice injected with α-syn fibrils and 20 PBS-injected mice at three timepoints (10 males and 10 females per group). Intramuscular injection of α-syn fibrils in the hindlimb of M83+/- mice leads to progressive α-syn pathology along the spinal cord, brainstem, and midbrain by 16 weeks post-injection. Our results suggest that peripheral injection of α-syn has acute systemic effects on the central nervous system such that structural and resting-state functional activity changes occur in the brain by four weeks post-injection, well before α-syn pathology reaches the brain. At 12 weeks post-injection, a separate and distinct pattern of structural and sensory-evoked functional brain activity changes was observed that are co-localized with previously reported regions of α-syn pathology and immune activation. Microstructural changes in the pons at 12 weeks post-injection were found to predict survival time and preceded measurable locomotor deficits. This study provides preliminary evidence for diffusion and fMRI markers linked to the progression of synuclein pathology and has translational importance for understanding synucleinopathies in humans.SIGNIFICANCE STATEMENT α-Synuclein (α-syn) pathology plays a critical role in neurodegenerative diseases such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The longitudinal effects of α-syn pathology on locomotion, brain microstructure, and functional brain activity are not well understood. Using high field imaging, we show preliminary evidence that peripheral injection of α-syn fibrils induces unique patterns of functional and structural changes that occur at different temporal stages of α-syn pathology progression. Our results challenge existing assumptions that α-syn pathology must precede changes in brain structure and function. Additionally, we show preliminary evidence that diffusion and functional magnetic resonance imaging (fMRI) are capable of resolving such changes and thus should be explored further as markers of disease progression.


Diversity in Aβ deposit morphology and secondary proteome insolubility across models of Alzheimer-type amyloidosis.

  • Guilian Xu‎ et al.
  • Acta neuropathologica communications‎
  • 2020‎

A hallmark pathology of Alzheimer's disease (AD) is the formation of amyloid β (Aβ) deposits that exhibit diverse localization and morphologies, ranging from diffuse to cored-neuritic deposits in brain parenchyma, with cerebral vascular deposition in leptomeningeal and parenchymal compartments. Most AD brains exhibit the full spectrum of pathologic Aβ morphologies. In the course of studies to model AD amyloidosis, we have generated multiple transgenic mouse models that vary in the nature of the transgene constructs that are expressed; including the species origin of Aβ peptides, the levels and length of Aβ that is deposited, and whether mutant presenilin 1 (PS1) is co-expressed. These models recapitulate features of human AD amyloidosis, but interestingly some models can produce pathology in which one type of Aβ morphology dominates. In prior studies of mice that primarily develop cored-neuritic deposits, we determined that Aβ deposition is associated with changes in cytosolic protein solubility in which a subset of proteins become detergent-insoluble, indicative of secondary proteome instability. Here, we survey changes in cytosolic protein solubility across seven different transgenic mouse models that exhibit a range of Aβ deposit morphologies. We find a surprisingly diverse range of changes in proteome solubility across these models. Mice that deposit human Aβ40 and Aβ42 in cored-neuritic plaques had the most robust changes in proteome solubility. Insoluble cytosolic proteins were also detected in the brains of mice that develop diffuse Aβ42 deposits but to a lesser extent. Notably, mice with cored deposits containing only Aβ42 had relatively few proteins that became detergent-insoluble. Our data provide new insight into the diversity of biological effects that can be attributed to different types of Aβ pathology and support the view that fibrillar cored-neuritic plaque pathology is the more disruptive Aβ pathology in the Alzheimer's cascade.


Impact of APOE genotype on prion-type propagation of tauopathy.

  • Tristan Williams‎ et al.
  • Acta neuropathologica communications‎
  • 2022‎

Apolipoprotein (APOE) is a major risk factor of Alzheimer's disease (AD), with the E2, E3 and E4 isoforms differentially regulating the burden of AD-associated neuropathologies, such as amyloid β and tau. In AD, pathological tau is thought to spread along neuroanatomic connections following a prion-like mechanism. To provide insights into whether APOE isoforms differentially regulate the prion properties of tau and determine trans-synaptic transmission of tauopathy, we have generated human P301S mutant tau transgenic mice (PS19) that carry human APOE (APOE2, APOE3 or APOE4) or mouse Apoe allele. Mice received intrahippocamal injections of preformed aggregates of K18-tau at young ages, which were analyzed 5 months post-inoculation. Compared to the parental PS19 mice with mouse Apoe alleles, PS19 mice expressing human APOE alleles generally responded to K18-tau seeding with more intense AT8 immunoreactive phosphorylated tau athology. APOE3 homozygous mice accumulated higher levels of AT8-reactive ptau and microgliosis relative to APOE2 or APOE4 homozygotes (E3 > E4~2). PS19 mice that were heterozygous for APOE3 showed similar results, albeit to a lesser degree. In the timeframe of our investigation, we did not observe significant induction of argentophilic or MC1-reactive neurofibrillary tau tangle in PS19 mice homozygous for human APOE. To our knowledge, this is the first comprehensive study in rodent models that provides neuropathological insights into the dose-dependent effect of APOE isoforms on phosphorylated tau pathology induced by recombinant tau prions.


Modulating innate immune activation states impacts the efficacy of specific Aβ immunotherapy.

  • Yona Levites‎ et al.
  • Molecular neurodegeneration‎
  • 2021‎

Passive immunotherapies targeting Aβ continue to be evaluated as Alzheimer's disease (AD) therapeutics, but there remains debate over the mechanisms by which these immunotherapies work. Besides the amount of preexisting Aβ deposition and the type of deposit (compact or diffuse), there is little data concerning what factors, independent of those intrinsic to the antibody, might influence efficacy. Here we (i) explored how constitutive priming of the underlying innate activation states by Il10 and Il6 might influence passive Aβ immunotherapy and (ii) evaluated transcriptomic data generated in the AMP-AD initiative to inform how these two cytokines and their receptors' mRNA levels are altered in human AD and an APP mouse model.


IL-10 based immunomodulation initiated at birth extends lifespan in a familial mouse model of amyotrophic lateral sclerosis.

  • Michael R Strickland‎ et al.
  • Scientific reports‎
  • 2020‎

Inflammatory signaling is thought to modulate the neurodegenerative cascade in amyotrophic lateral sclerosis (ALS). We have previously shown that expression of Interleukin-10 (IL-10), a classical anti-inflammatory cytokine, extends lifespan in the SOD1-G93A mouse model of familial ALS. Here we test whether co-expression of the decoy chemokine receptor M3, that can scavenge inflammatory chemokines, augments the efficacy of IL-10. We found that recombinant adeno-associated virus (AAV)-mediated expression of IL-10, alone, or in combination with M3, resulted in modest extension of lifespan relative to control SOD1-G93A cohort. Interestingly neither AAV-M3 alone nor AAV-IL-10 + AAV-M3 extend survival beyond that of the AAV-IL-10 alone cohort. Focused transcriptomic analysis revealed induction of innate immunity and phagocytotic pathways in presymptomatic SOD1-G93A mice expressing IL-10 + M3 or IL-10 alone. Further, while IL-10 expression increased microglial burden, the IL-10 + M3 group showed lower microglial burden, suggesting that M3 can successfully lower microgliosis before disease onset. Our data demonstrates that over-expression of an anti-inflammatory cytokine and a decoy chemokine receptor can modulate inflammatory processes in SOD1-G93A mice, modestly delaying the age to paralysis. This suggests that multiple inflammatory pathways can be targeted simultaneously in neurodegenerative disease and supports consideration of adapting these approaches to treatment of ALS and related disorders.


An anti-CRF antibody suppresses the HPA axis and reverses stress-induced phenotypes.

  • Hunter S Futch‎ et al.
  • The Journal of experimental medicine‎
  • 2019‎

Hypothalamic-pituitary-adrenal (HPA) axis dysfunction contributes to numerous human diseases and disorders. We developed a high-affinity monoclonal antibody, CTRND05, targeting corticotropin-releasing factor (CRF). In mice, CTRND05 blocks stress-induced corticosterone increases, counteracts effects of chronic variable stress, and induces other phenotypes consistent with suppression of the HPA axis. CTRND05 induces skeletal muscle hypertrophy and increases lean body mass, effects not previously reported with small-molecule HPA-targeting pharmacologic agents. Multiorgan transcriptomics demonstrates broad HPA axis target engagement through altering levels of known HPA-responsive transcripts such as Fkbp5 and Myostatin and reveals novel HPA-responsive pathways such as the Apelin-Apelin receptor system. These studies demonstrate the therapeutic potential of CTRND05 as a suppressor of the HPA axis and serve as an exemplar of a potentially broader approach to target neuropeptides with immunotherapies, as both pharmacologic tools and novel therapeutics.


Humanized APOE genotypes influence lifespan independently of tau aggregation in the P301S mouse model of tauopathy.

  • Tristan Williams‎ et al.
  • Acta neuropathologica communications‎
  • 2023‎

Apolipoprotein (APOE) E4 isoform is a major risk factor of Alzheimer's disease and contributes to metabolic and neuropathological abnormalities during brain aging. To provide insights into whether APOE4 genotype is related to tau-associated neurodegeneration, we have generated human P301S mutant tau transgenic mice (PS19) that carry humanized APOE alleles (APOE2, APOE3 or APOE4). In aging mice that succumbed to paralysis, PS19 mice homozygous for APOE3 had the longest lifespan when compared to APOE4 and APOE2 homozygous mice (APOE3 > APOE4 ~ APOE2). Heterozygous mice with one human APOE and one mouse Apoe allele did not show any variations in lifespan. At end-stage, PS19 mice homozygous for APOE3 and APOE4 showed equivalent levels of phosphorylated tau burden, inflammation levels and ventricular volumes. Compared to these cohorts, PS19 mice homozygous for APOE2 showed lower induction of phosphorylation on selective epitopes, though the effect sizes were small and variable. In spite of this, the APOE2 cohort showed shorter lifespan relative to APOE3 homozygous mice. None of the cohorts accumulated appreciable levels of phosphorylated tau compartmentalized in the insoluble cell fraction. RNAseq analysis showed that the induction of immune gene expression was comparable across all the APOE genotypes in PS19 mice. Notably, the APOE4 homozygous mice showed additional induction of transcripts corresponding to the Alzheimer's disease-related plaque-induced gene signature. In human Alzheimer's disease brain tissues, we found no direct correlation between higher burden of phosphorylated tau and APOE4 genotype. As expected, there was a strong correlation between phosphorylated tau burden with amyloid deposition in APOE4-positive Alzheimer's disease cases. Overall, our results indicate that APOE3 genotype may confer some resilience to tauopathy, while APOE4 and APOE2 may act through multiple pathways to increase the pathogenicity in the context of tauopathy.


Neurite orientation dispersion and density imaging reveals white matter and hippocampal microstructure changes produced by Interleukin-6 in the TgCRND8 mouse model of amyloidosis.

  • Luis M Colon-Perez‎ et al.
  • NeuroImage‎
  • 2019‎

Extracellular β-amyloid (Aβ) plaque deposits and inflammatory immune activation are thought to alter various aspects of tissue microstructure, such as extracellular free water, fractional anisotropy and diffusivity, as well as the density and geometric arrangement of axonal processes. Quantifying these microstructural changes in Alzheimer's disease and related neurodegenerative dementias could serve to monitor or predict disease course. In the present study we used high-field diffusion magnetic resonance imaging (dMRI) to investigate the effects of Aβ and inflammatory interleukin-6 (IL6), alone or in combination, on in vivo tissue microstructure in the TgCRND8 mouse model of Alzheimer's-type Aβ deposition. TgCRND8 and non-transgenic (nTg) mice expressing brain-targeted IL6 or enhanced glial fibrillary protein (EGFP controls) were scanned at 8 months of age using a 2-shell, 54-gradient direction dMRI sequence at 11.1 T. Images were processed using the diffusion tensor imaging (DTI) model or the neurite orientation dispersion and density imaging (NODDI) model. DTI and NODDI processing in TgCRND8 mice revealed a microstructure pattern in white matter (WM) and hippocampus consistent with radial and longitudinal diffusivity deficits along with an increase in density and geometric complexity of axonal and dendritic processes. This included reduced FA, mean, axial and radial diffusivity, and increased orientation dispersion (ODI) and intracellular volume fraction (ICVF) measured in WM and hippocampus. IL6 produced a 'protective-like' effect on WM FA in TgCRND8 mice, observed as an increased FA that counteracted a reduction in FA observed with endogenous Aβ production and accumulation. In addition, we found that ICVF and ODI had an inverse relationship with the functional connectome clustering coefficient. The relationship between NODDI and graph theory metrics suggests that currently unknown microstructure alterations in WM and hippocampus are associated with diminished functional network organization in the brain.


Transient pharmacologic lowering of Aβ production prior to deposition results in sustained reduction of amyloid plaque pathology.

  • Pritam Das‎ et al.
  • Molecular neurodegeneration‎
  • 2012‎

Alzheimer's disease (AD) is the leading cause of dementia among the elderly. Disease modifying therapies targeting Aβ that are in development have been proposed to be more effective if treatment was initiated prior to significant accumulation of Aβ in the brain, but optimal timing of treatment initiation has not been clearly established in the clinic. We compared the efficacy of transient pharmacologic reduction of brain Aβ with a γ-secretase inhibitor (GSI ) for 1-3 months (M) treatment windows in APP Tg2576 mice and subsequent aging of the mice to either 15M or 18M.


rAAV-based brain slice culture models of Alzheimer's and Parkinson's disease inclusion pathologies.

  • Cara L Croft‎ et al.
  • The Journal of experimental medicine‎
  • 2019‎

It has been challenging to produce ex vivo models of the inclusion pathologies that are hallmark pathologies of many neurodegenerative diseases. Using three-dimensional mouse brain slice cultures (BSCs), we have developed a paradigm that rapidly and robustly recapitulates mature neurofibrillary inclusion and Lewy body formation found in Alzheimer's and Parkinson's disease, respectively. This was achieved by transducing the BSCs with recombinant adeno-associated viruses (rAAVs) that express α-synuclein or variants of tau. Notably, the tauopathy BSC model enables screening of small molecule therapeutics and tracking of neurodegeneration. More generally, the rAAV BSC "toolkit" enables efficient transduction and transgene expression from neurons, microglia, astrocytes, and oligodendrocytes, alone or in combination, with transgene expression lasting for many months. These rAAV-based BSC models provide a cost-effective and facile alternative to in vivo studies, and in the future can become a widely adopted methodology to explore physiological and pathological mechanisms related to brain function and dysfunction.


Amyloid β peptides overexpression in retinal pigment epithelial cells via AAV-mediated gene transfer mimics AMD-like pathology in mice.

  • Tuhina Prasad‎ et al.
  • Scientific reports‎
  • 2017‎

Age-related macular degeneration (AMD) is a progressive retinal neurodegenerative disorder characterized by extracellular deposits known as drusen. A major constituent of drusen deposits are Alzheimer disease-associated amyloid β (Aβ) peptides. To understand the etiology of Aβ proteostasis in AMD, we delivered recombinant adeno-associated virus (AAV) encoding Aβ42 and Aβ40 peptides fused to BRI2 protein by intraocular injection in C57BL/6J mice. Endogenous protease cleavage of such constructs leads to production of secreted Aβ42 and Aβ40 respectively. We demonstrate that overexpression of secreted Aβ40 or Aβ42 resulted in dramatic induction of drusen-like deposits by 2 months' post-injection. These drusen-like deposits were immunopositive for Aβ and complement proteins but did not stain for conventional amyloid dyes, such as Thioflavin S. Both injected cohorts showed gliosis and degenerative changes, though ERG responses were minimally affected. Intriguingly, simultaneous overexpression of BRI-Aβ40 or BRI-Aβ42 together resulted in dose-dependent and cumulative changes reminiscent of AMD type pathology - drusen-like deposits, severe reduction in ERG responses, photoreceptor cell loss and gliosis. Here, we have established a physiological model of Aβ containing deposits in wild-type mice that recapitulates major retinal pathophysiological features of AMD and will be instrumental in mechanistic understanding and development of therapeutic strategies against AMD.


Novel monoclonal antibodies targeting the microtubule-binding domain of human tau.

  • Cara L Croft‎ et al.
  • PloS one‎
  • 2018‎

Tauopathies including Alzheimer's disease and Progressive Supranuclear Palsy are a diverse group of progressive neurodegenerative disorders pathologically defined by inclusions containing aberrantly aggregated, post-translationally modified tau. The tau pathology burden correlates with neurodegeneration and dementia observed in these diseases. The microtubule binding domain of tau is essential for its physiological functions in promoting neuronal cytoskeletal stability, however it is also required for tau to assemble into an amyloid structure that comprises pathological inclusions. A series of novel monoclonal antibodies were generated which recognize the second and fourth microtubule-binding repeat domain of tau, thus enabling the identification specifically of 4-repeat tau versus 3-/4-repeat tau, respectively. These antibodies are highly specific for tau and recognize pathological tau inclusions in human tauopathies including Alzheimer's disease and Progressive Supranuclear Palsy and in transgenic mouse models of tauopathies. These new antibodies will be useful for identifying and characterizing different tauopathies and as tools to target tau pathology in these diseases.


Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition.

  • Paramita Chakrabarty‎ et al.
  • Molecular neurodegeneration‎
  • 2012‎

Pro-inflammatory stimuli, including cytokines like Interleukin-1β, Interleukin-6 and Interferon-γ, in the brain have been proposed to exacerbate existing Alzheimer's disease (AD) neuropathology by increasing amyloidogenic processing of APP and promoting further Aβ accumulation in AD. On the other hand, anti-inflammatory cytokines have been suggested to be neuroprotective by reducing neuroinflammation and clearing Aβ. To test this hypothesis, we used adeno-associated virus serotype 1 (AAV2/1) to express an anti-inflammatory cytokine, murine Interleukin-4 (mIL-4), in the hippocampus of APP transgenic TgCRND8 mice with pre-existing plaques.


Tau Ser208 phosphorylation promotes aggregation and reveals neuropathologic diversity in Alzheimer's disease and other tauopathies.

  • Yuxing Xia‎ et al.
  • Acta neuropathologica communications‎
  • 2020‎

Tau protein abnormally aggregates in tauopathies, a diverse group of neurologic diseases that includes Alzheimer's disease (AD). In early stages of disease, tau becomes hyperphosphorylated and mislocalized, which can contribute to its aggregation and toxicity. We demonstrate that tau phosphorylation at Ser208 (pSer208) promotes microtubule dysfunction and tau aggregation in cultured cells. Comparative assessment of the epitopes recognized by antibodies AT8, CP13, and 7F2 demonstrates that CP13 and 7F2 are specific for tau phosphorylation at Ser202 and Thr205, respectively, independently of the phosphorylation state of adjacent phosphorylation sites. Supporting the involvement of pSer208 in tau pathology, a novel monoclonal antibody 3G12 specific for tau phosphorylation at Ser208 revealed strong reactivity of tau inclusions in the brains of PS19 and rTg4510 transgenic mouse models of tauopathy. 3G12 also labelled neurofibrillary tangles in brains of patients with AD but revealed differential staining compared to CP13 and 7F2 for other types of tau pathologies such as in neuropil threads and neuritic plaques in AD, tufted astrocytes in progressive supranuclear palsy and astrocytic plaques in corticobasal degeneration. These results support the hypothesis that tau phosphorylation at Ser208 strongly contributes to unique types of tau aggregation and may be a reliable marker for the presence of mature neurofibrillary tangles.


Differential cross-seeding properties of tau and α-synuclein in mouse models of tauopathy and synucleinopathy.

  • Tosha Williams‎ et al.
  • Brain communications‎
  • 2020‎

Co-occurrence of tau and α-synuclein pathologies in a subset of Alzheimer's disease patients has led to the idea that mixed pathologies may play a unique characteristic role in the Alzheimer's disease neurodegenerative cascade. To understand the aetiology of such mixed pathologies, we investigated cross-seeding by human recombinant tau and human recombinant α-synuclein fibrillar species in a mouse model of tauopathy (Line PS19) or synucleinopathy (Line M20). Unilateral hippocampal injection of tau fibrils or α-synuclein fibrils, and to a lesser extent tau + α-synuclein copolymer fibrils prepared from co-incubating individual recombinant monomers, induced robust phosphorylated tau pathology in PS19 mice relative to control mice. Though the tau + α-synuclein copolymer fibrils did not modulate induction of pathologies at the site of injection, examination of the whole brain showed that these copolymers exacerbated neuroanatomic transmission of seeded tau pathology compared to tau fibril-injected mice. Only α-synuclein fibrils, but not tau alone or tau + α-synuclein copolymers, triggered modest levels of endogenous phosphorylated α-synuclein pathology. Overall, data from the PS19 mice suggest that human α-synuclein fibrils can efficiently cross-seed human tau and have a modest priming effect on mouse α-synuclein, and the presence of tau fibrils does not exacerbate the priming process. In M20 mice, unilateral hippocampal injection of α-synuclein fibrils or tau fibrils induced robust bilateral phosphorylated α-synuclein pathology, while tau + α-synuclein copolymer injection resulted in restricted phosphorylated α-synuclein pathology predominantly in the ipsilateral cortex. This suggests that human tau fibrils can also induce human α-synuclein pathogenesis, and the presence of combinatorial seeds is not synergistic. None of these aggregates induced phosphorylated tau pathology in M20 mice, showing that mouse tau cannot be primed efficiently by human tau fibrils or human α-synuclein fibrils. Neuropathological analysis of the whole brain of M20 mice showed that tau + α-synuclein copolymer-injected mice had lower abundance of bilaterally transmitted α-synuclein pathologies relative to α-synuclein fibril-injected mice. Thus, the tau + α-synuclein copolymer fibrils show robust transmission properties preferentially in rodent model of tauopathies but not in synucleinopathy, probably signifying an enhanced cooperative relationship between tau and α-synuclein in the tau seeding process. Together, our data highlight the unique cross-seeding properties of tau and αSyn in neurodegenerative proteinopathies.


Sex, sepsis and the brain: defining the role of sexual dimorphism on neurocognitive outcomes after infection.

  • Valerie E Polcz‎ et al.
  • Clinical science (London, England : 1979)‎
  • 2023‎

Sexual dimorphisms exist in multiple domains, from learning and memory to neurocognitive disease, and even in the immune system. Male sex has been associated with increased susceptibility to infection, as well as increased risk of adverse outcomes. Sepsis remains a major source of morbidity and mortality globally, and over half of septic patients admitted to intensive care are believed to suffer some degree of sepsis-associated encephalopathy (SAE). In the short term, SAE is associated with an increased risk of in-hospital mortality, and in the long term, has the potential for significant impairment of cognition, memory, and acceleration of neurocognitive disease. Despite increasing information regarding sexual dimorphism in neurologic and immunologic systems, research into these dimorphisms in sepsis-associated encephalopathy remains critically understudied. In this narrative review, we discuss how sex has been associated with brain morphology, chemistry, and disease, sexual dimorphism in immunity, and existing research into the effects of sex on SAE.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: