Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Cardiac concentric hypertrophy promoted by activated Met receptor is mitigated in vivo by inhibition of Erk1,2 signalling with Pimasertib.

  • Valentina Sala‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2016‎

Cardiac hypertrophy is a major risk factor for heart failure. Hence, its attenuation represents an important clinical goal. Erk1,2 signalling is pivotal in the cardiac response to stress, suggesting that its inhibition may be a good strategy to revert heart hypertrophy. In this work, we unveiled the events associated with cardiac hypertrophy by means of a transgenic model expressing activated Met receptor. c-Met proto-oncogene encodes for the tyrosine kinase receptor of Hepatocyte growth factor and is a strong inducer of Ras-Raf-Mek-Erk1,2 pathway. We showed that three weeks after the induction of activated Met, the heart presents a remarkable concentric hypertrophy, with no signs of congestive failure and preserved contractility. Cardiac enlargement is accompanied by upregulation of growth-regulating transcription factors, natriuretic peptides, cytoskeletal proteins, and Extracellular Matrix remodelling factors (Timp1 and Pai1). At a later stage, cardiac hypertrophic remodelling results into heart failure with preserved systolic function. Prevention trial by suppressing activated Met showed that cardiac hypertrophy is reversible, and progression to heart failure is prevented. Notably, treatment with Pimasertib, Mek1 inhibitor, attenuates cardiac hypertrophy and remodelling. Our results suggest that modulation of Erk1.2 signalling may constitute a new therapeutic approach for treating cardiac hypertrophies.


Molecular Engineering Strategies Tailoring the Apoptotic Response to a MET Therapeutic Antibody.

  • Chiara Modica‎ et al.
  • Cancers‎
  • 2020‎

The MET oncogene encodes a tyrosine kinase receptor involved in the control of a complex network of biological responses that include protection from apoptosis and stimulation of cell growth during embryogenesis, tissue regeneration, and cancer progression. We previously developed an antagonist antibody (DN30) inducing the physical removal of the receptor from the cell surface and resulting in suppression of the biological responses to MET. In its bivalent form, the antibody displayed a residual agonist activity, due to dimerization of the lingering receptors, and partial activation of the downstream signaling cascade. The balance between the two opposing activities is variable in different biological systems and is hardly predictable. In this study, we generated and characterized two single-chain antibody fragments derived from DN30, sharing the same variable regions but including linkers different in length and composition. The two engineered molecules bind MET with high affinity but induce different biological responses. One behaves as a MET-antagonist, promoting programmed cell death in MET "addicted" cancer cells. The other acts as a hepatocyte growth factor (HGF)-mimetic, protecting normal cells from doxorubicin-induced apoptosis. Thus, by engineering the same receptor antibody, it is possible to generate molecules enhancing or inhibiting apoptosis either to kill cancer cells or to protect healthy tissues from the injuries of chemotherapy.


Activation of the MET receptor attenuates doxorubicin-induced cardiotoxicity in vivo and in vitro.

  • Simona Gallo‎ et al.
  • British journal of pharmacology‎
  • 2020‎

Doxorubicin anti-cancer therapy is associated with cardiotoxicity, resulting from DNA damage response (DDR). Hepatocyte growth factor (HGF) protects cardiomyocytes from injury, but its effective use is compromised by low biodistribution. In this study, we have investigated whether the activation of the HGF receptor-encoded by the Met gene-by an agonist monoclonal antibody (mAb) could protect against doxorubicin-induced cardiotoxicity.


Efficacy of CAR-T immunotherapy in MET overexpressing tumors not eligible for anti-MET targeted therapy.

  • Cristina Chiriaco‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2022‎

Aberrant activation of the MET receptor in cancer is sustained by genetic alterations or, more frequently, by transcriptional upregulations. A fraction of MET-amplified or mutated tumors are sensible to MET targeting agents, but their responsiveness is typically short-lasting, as secondary resistance eventually occurs. Since in the absence of genetic alterations MET is usually not a tumor driver, MET overexpressing tumors are not/poorly responsive to MET targeted therapies. Consequently, the vast majority of tumors exhibiting MET activation still represent an unmet medical need.


Increased Lactate Secretion by Cancer Cells Sustains Non-cell-autonomous Adaptive Resistance to MET and EGFR Targeted Therapies.

  • Maria Apicella‎ et al.
  • Cell metabolism‎
  • 2018‎

The microenvironment influences cancer drug response and sustains resistance to therapies targeting receptor-tyrosine kinases. However, if and how the tumor microenvironment can be altered during treatment, contributing to resistance onset, is not known. We show that, under prolonged treatment with tyrosine kinase inhibitors (TKIs), EGFR- or MET-addicted cancer cells displayed a metabolic shift toward increased glycolysis and lactate production. We identified secreted lactate as the key molecule instructing cancer-associated fibroblasts to produce hepatocyte growth factor (HGF) in a nuclear factor κB-dependent manner. Increased HGF, activating MET-dependent signaling in cancer cells, sustained resistance to TKIs. Functional or pharmacological targeting of molecules involved in the lactate axis abrogated in vivo resistance, demonstrating the crucial role of this metabolite in the adaptive process. This adaptive resistance mechanism was observed in lung cancer patients progressed on EGFR TKIs, demonstrating the clinical relevance of our findings and opening novel scenarios in the challenge to drug resistance.


Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages.

  • Jose Rafael Sierra‎ et al.
  • The Journal of experimental medicine‎
  • 2008‎

Increased evidence suggests that cancer-associated inflammation supports tumor growth and progression. We have previously shown that semaphorin 4D (Sema4D), a ligand produced by different cell types, is a proangiogenic molecule that acts by binding to its receptor, plexin B1, expressed on endothelial cells (Conrotto, P., D. Valdembri, S. Corso, G. Serini, L. Tamagnone, P.M. Comoglio, F. Bussolino, and S. Giordano. 2005. Blood. 105:4321-4329). The present work highlights the role of Sema4D produced by the tumor microenvironment on neoplastic angiogenesis. We show that in an environment lacking Sema4D, the ability of cancer cells to generate tumor masses and metastases is severely impaired. This condition can be explained by a defective vascularization inside the tumor. We demonstrate that tumor-associated macrophages (TAMs) are the main cells producing Sema4D within the tumor stroma and that their ability to produce Sema4D is critical for tumor angiogenesis and vessel maturation. This study helps to explain the protumoral role of inflammatory cells of the tumor stroma and leads to the identification of an angiogenic molecule that might be a novel therapeutic target.


The Long-Lasting Protective Effect of HGF in Cardiomyoblasts Exposed to Doxorubicin Requires a Positive Feed-Forward Loop Mediated by Erk1,2-Timp1-Stat3.

  • Simona Gallo‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Previous studies showed that the hepatocyte growth factor (HGF)-Met receptor axis plays long-lasting cardioprotection against doxorubicin anti-cancer therapy. Here, we explored the mechanism(s) underlying the HGF protective effect. DNA damage was monitored by histone H2AX phosphorylation and apoptosis by proteolytic cleavage of caspase 3. In doxorubicin-treated H9c2 cardiomyoblasts, the long-lasting cardioprotection is mediated by activation of the Ras/Raf/Mek/Erk (extracellular signal-regulated kinase 1,2) signaling pathway and requires Stat3 (signal transducer and activator of transcription 3) activation. The HGF protection was abrogated by the Erk1,2 inhibitor, PD98059. This translated into reduced Y705 phosphorylation and impaired nuclear translocation of Stat3, showing crosstalk between Erk1,2 and Stat3 signaling. An array of 29 cytokines, known to activate Stat3, was interrogated to identify the molecule(s) linking the two pathways. The analysis showed a selective increase in expression of the tissue inhibitor of metalloproteinases-1 (Timp1). Consistently, inhibition in cardiomyoblasts of Timp1 translation by siRNAs blunted both Stat3 activation and the cardioprotective effect of HGF. Thus, Timp1 is responsible for the generation of a feed-forward loop of Stat3 activation and helps cardiomyocytes to survive during the genotoxic stress induced by anthracyclines.


Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene.

  • Claudia Ghigna‎ et al.
  • Molecular cell‎
  • 2005‎

Ron, the tyrosine kinase receptor for the Macrophage-stimulating protein, is involved in cell dissociation, motility, and matrix invasion. DeltaRon, a constitutively active isoform that confers increased motility to expressing cells, is generated through the skipping of exon 11. We show that abnormal accumulation of DeltaRon mRNA occurs in breast and colon tumors. Skipping of exon 11 is controlled by a silencer and an enhancer of splicing located in the constitutive exon 12. The strength of the enhancer parallels the relative abundance of DeltaRon mRNA and depends on a sequence directly bound by splicing factor SF2/ASF. Overexpression and RNAi experiments demonstrate that SF2/ASF, by controlling the production of DeltaRon, activates epithelial to mesenchymal transition leading to cell locomotion. The effect of SF2/ASF overexpression is reverted by specific knockdown of DeltaRon mRNA. This demonstrates a direct link between SF2/ASF-regulated splicing and cell motility, an activity important for embryogenesis, tissue formation, and tumor metastasis.


The PSI Domain of the MET Oncogene Encodes a Functional Disulfide Isomerase Essential for the Maturation of the Receptor Precursor.

  • Dogus Murat Altintas‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The tyrosine kinase receptor encoded by the MET oncogene has been extensively studied. Surprisingly, one extracellular domain, PSI, evolutionary conserved between plexins, semaphorins, and integrins, has no established function. The MET PSI sequence contains two CXXC motifs, usually found in protein disulfide isomerases (PDI). Using a scrambled oxidized RNAse enzymatic activity assay in vitro, we show, for the first time, that the MET extracellular domain displays disulfide isomerase activity, abolished by PSI domain antibodies. PSI domain deletion or mutations of CXXC sites to AXXA or SXXS result in a significant impairment of the cleavage of the MET 175 kDa precursor protein, abolishing the maturation of α and β chains, of, respectively, 50 kDa and 145 kDa, disulfide-linked. The uncleaved precursor is stuck in the Golgi apparatus and, interestingly, is constitutively phosphorylated. However, no signal transduction is observed as measured by AKT and MAPK phosphorylation. Consequently, biological responses to the MET ligand-hepatocyte growth factor (HGF)-such as growth and epithelial to mesenchymal transition, are hampered. These data show that the MET PSI domain is functional and is required for the maturation, surface expression, and biological functions of the MET oncogenic protein.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: