Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Quantitative membrane proteomics reveals a role for tetraspanin enriched microdomains during entry of human cytomegalovirus.

  • Kasinath Viswanathan‎ et al.
  • PloS one‎
  • 2017‎

Human cytomegalovirus (HCMV) depends on and modulates multiple host cell membrane proteins during each stage of the viral life cycle. To gain a global view of the impact of HCMV-infection on membrane proteins, we analyzed HCMV-induced changes in the abundance of membrane proteins in fibroblasts using stable isotope labeling with amino acids (SILAC), membrane fractionation and protein identification by two-dimensional liquid chromatography and tandem mass spectrometry. This systematic approach revealed that CD81, CD44, CD98, caveolin-1 and catenin delta-1 were down-regulated during infection whereas GRP-78 was up-regulated. Since CD81 downregulation was also observed during infection with UV-inactivated virus we hypothesized that this tetraspanin is part of the viral entry process. Interestingly, additional members of the tetraspanin family, CD9 and CD151, were also downregulated during HCMV-entry. Since tetraspanin-enriched microdomains (TEM) cluster host cell membrane proteins including known CMV receptors such as integrins, we studied whether TEMs are required for viral entry. When TEMs were disrupted with the cholesterol chelator methyl-β-cylcodextrin, viral entry was inhibited and this inhibition correlated with reduced surface levels of CD81, CD9 and CD151, whereas integrin levels remained unchanged. Furthermore, simultaneous siRNA-mediated knockdown of multiple tetraspanins inhibited viral entry whereas individual knockdown had little effect suggesting essential, but redundant roles for individual tetraspanins during entry. Taken together, our data suggest that TEM act as platforms for receptors utilized by HCMV for entry into cells.


Cracd Marks the First Wave of Meiosis during Spermatogenesis and Is Mis-Expressed in Azoospermia Mice.

  • Paige L Snider‎ et al.
  • Journal of developmental biology‎
  • 2020‎

Testicular development starts in utero and maturation continues postnatally, requiring a cascade of gene activation and differentiation into different cell types, with each cell type having its own specific function. As we had previously reported that the Capping protein inhibiting regulator of actin (Cracd) gene was expressed in the adult mouse testis, herein we examine when and where the β-catenin associated Cracd is initially expressed during postnatal testis development. Significantly, Cracd mRNA is present in both the immature postnatal and adult testis in round spermatid cells, with highest level of expression occurring during the first wave of meiosis and spermatogenesis. In the juvenile testes, Cracd is initially expressed within the innermost region but as maturation occurs, Cracd mRNA switches to a more peripheral location. Thereafter, Cracd is downregulated to maintenance levels in the haploid male germ cell lineage. As Cracd mRNA was expressed within developing round spermatids, we tested its effectiveness as a biomarker of non-obstructive azoospermia using transgenic knockout mice models. Meaningfully, Cracd expression was absent in Deleted in azoospermia like (Dazl) null testis, which exhibit a dramatic germ cell loss. Moreover, Cracd was abnormally regulated and ectopically mis-expressed in Polypyrimidine tract binding protein-2 (Ptbp2) conditional germ cell restricted knockout testis, which exhibit a block during spermatid differentiation and a reduction in the number of late stage spermatocytes coincident with reduced β-catenin expression. Combined, these data suggest that Cracd is a useful first wave of spermatogenesis biomarker of azoospermia phenotypes, even prior to an overt phenotype being evident.


HDAC1 and HDAC2 control the specification of neural crest cells into peripheral glia.

  • Claire Jacob‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2014‎

Schwann cells, the myelinating glia of the peripheral nervous system (PNS), originate from multipotent neural crest cells that also give rise to other cells, including neurons, melanocytes, chondrocytes, and smooth muscle cells. The transcription factor Sox10 is required for peripheral glia specification. However, all neural crest cells express Sox10 and the mechanisms directing neural crest cells into a specific lineage are poorly understood. We show here that histone deacetylases 1 and 2 (HDAC1/2) are essential for the specification of neural crest cells into Schwann cell precursors and satellite glia, which express the early determinants of their lineage myelin protein zero (P0) and/or fatty acid binding protein 7 (Fabp7). In neural crest cells, HDAC1/2 induced expression of the transcription factor Pax3 by binding and activating the Pax3 promoter. In turn, Pax3 was required to maintain high Sox10 levels and to trigger expression of Fabp7. In addition, HDAC1/2 were bound to the P0 promoter and activated P0 transcription. Consistently, in vivo genetic deletion of HDAC1/2 in mouse neural crest cells led to strongly decreased Sox10 expression, no detectable Pax3, virtually no satellite glia, and no Schwann cell precursors in dorsal root ganglia and peripheral nerves. Similarly, in vivo ablation of Pax3 in the mouse neural crest resulted in strongly reduced expression of Sox10 and Fabp7. Therefore, by controlling the expression of Pax3 and the concerted action of Pax3 and Sox10 on their target genes, HDAC1/2 direct the specification of neural crest cells into peripheral glia.


Armadillo-like helical domain containing-4 is dynamically expressed in both the first and second heart fields.

  • Simon J Conway‎ et al.
  • Gene expression patterns : GEP‎
  • 2019‎

Armadillo repeat and Armadillo-like helical domain containing proteins form a large family with diverse and fundamental functions in many eukaryotes. Herein we investigated the spatiotemporal expression pattern of Armadillo-like helical domain containing 4 (or Armh4) as an uncharacterized protein coding mouse gene, within the mouse embryo during the initial stages of heart morphogenesis. We found Armh4 is initially expressed in both first heart field as well as the second heart field progenitors and subsequently within predominantly their cardiomyocyte derivatives. Armh4 expression is initially cardiac-restricted in the developing embryo and is expressed in second heart field subpharyngeal mesoderm prior to cardiomyocyte differentiation, but Armh4 diminishes as the embryonic heart matures into the fetal heart. Armh4 is subsequently expressed in craniofacial structures and neural crest-derived dorsal root and trigeminal ganglia. Whereas lithium chloride-induced stimulation of Wnt/β-catenin signaling elevated Armh4 expression in both second heart field subpharyngeal mesodermal progenitors and outflow tract, right ventricle and atrial cardiomyocytes, neither a systemic loss of Islet-1 nor an absence of cardiac neural crest cells had any effect upon Armh4 expression. These results confirm that Wnt/β-catenin-responsive Armh4 is a useful specific biomarker of the FHF and SHF cardiomyocyte derivatives only.


Yin Yang 1 Orchestrates a Metabolic Program Required for Both Neural Crest Development and Melanoma Formation.

  • Sandra Varum‎ et al.
  • Cell stem cell‎
  • 2019‎

Increasing evidence suggests that cancer cells highjack developmental programs for disease initiation and progression. Melanoma arises from melanocytes that originate during development from neural crest stem cells (NCSCs). Here, we identified the transcription factor Yin Yang 1 (Yy1) as an NCSCs regulator. Conditional deletion of Yy1 in NCSCs resulted in stage-dependent hypoplasia of all major neural crest derivatives due to decreased proliferation and increased cell death. Moreover, conditional ablation of one Yy1 allele in a melanoma mouse model prevented tumorigenesis, indicating a particular susceptibility of melanoma cells to reduced Yy1 levels. Combined RNA sequencing (RNA-seq), chromatin immunoprecipitation (ChIP)-seq, and untargeted metabolomics demonstrated that YY1 governs multiple metabolic pathways and protein synthesis in both NCSCs and melanoma. In addition to directly regulating a metabolic gene set, YY1 can act upstream of MITF/c-MYC as part of a gene regulatory network controlling metabolism. Thus, both NCSC development and melanoma formation depend on an intricate YY1-controlled metabolic program.


Multiple lineage-specific roles of Smad4 during neural crest development.

  • Stine Büchmann-Møller‎ et al.
  • Developmental biology‎
  • 2009‎

During vertebrate development, neural crest cells are exposed to multiple extracellular cues that drive their differentiation into neural and non-neural cell lineages. Insights into the signals potentially involved in neural crest cell fate decisions in vivo have been gained by cell culture experiments that have allowed the identification of instructive growth factors promoting either proliferation of multipotent neural crest cells or acquisition of specific fates. For instance, members of the TGFbeta factor family induce neurogenesis and smooth muscle cell formation at the expense of other fates in culture. In vivo, conditional ablation of various TGFbeta signaling components resulted in malformations of non-neural derivatives of the neural crest, but it is unclear whether these phenotypes involved aberrant fate decisions. Moreover, it remains to be shown whether neuronal determination indeed requires TGFbeta factor activity in vivo. To address these issues, we conditionally deleted Smad4 in the neural crest, thus inactivating all canonical TGFbeta factor signaling. Surprisingly, neural crest cell fates were not affected in these mutants, with the exception of sensory neurogenesis in trigeminal ganglia. Rather, Smad4 regulates survival of smooth muscle and proliferation of autonomic and ENS neuronal progenitor cells. Thus, Smad signaling plays multiple, lineage-specific roles in vivo, many of which are elicited only after neural crest cell fate decision.


Analysis of Uncharacterized mKiaa1211 Expression during Mouse Development and Cardiovascular Morphogenesis.

  • Paige L Snider‎ et al.
  • Journal of cardiovascular development and disease‎
  • 2019‎

Mammalian Kiaa1211 and Kiaa1211-like are a homologous pair of uncharacterized, highly conserved genes cloned from fetal and adult brain cDNA libraries. Herein we map the in utero spatiotemporal expression of mKiaa1211 and mKiaa1211L mRNA and their expression patterns in postnatal testis, skin, gastrointestinal, and adipose progenitor tissues. Significantly, mKiaa1211 is present throughout the early stages of mouse heart development, particularly in the second heart field (SHF) lineage as it differentiates from mesenchymal cells into cardiomyocytes. We also show that mKiaa1211 is expressed within several early neuronal tissues destined to give rise to central, peripheral, and sympathetic nervous system structures. Expression profiling revealed that the paralog mKiaa1211L is not expressed during the normal developmental process and that mKiaa1211 expression was noticeably absent from most adult terminally differentiated tissues. Finally, we confirm that a previously uncharacterized CRISPR/CAS-generated mKiaa1211 mouse mutant allele is hypomorphic.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: