Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

CSF1R inhibition rescues tau pathology and neurodegeneration in an A/T/N model with combined AD pathologies, while preserving plaque associated microglia.

  • Chritica Lodder‎ et al.
  • Acta neuropathologica communications‎
  • 2021‎

Alzheimer's disease (AD) is characterized by a sequential progression of amyloid plaques (A), neurofibrillary tangles (T) and neurodegeneration (N), constituting ATN pathology. While microglia are considered key contributors to AD pathogenesis, their contribution in the combined presence of ATN pathologies remains incompletely understood. As sensors of the brain microenvironment, microglial phenotypes and contributions are importantly defined by the pathologies in the brain, indicating the need for their analysis in preclinical models that recapitulate combined ATN pathologies, besides their role in A and T models only. Here, we report a new tau-seed model in which amyloid pathology facilitates bilateral tau propagation associated with brain atrophy, thereby recapitulating robust ATN pathology. Single-cell RNA sequencing revealed that ATN pathology exacerbated microglial activation towards disease-associated microglia states, with a significant upregulation of Apoe as compared to amyloid-only models (A). Importantly, Colony-Stimulating Factor 1 Receptor inhibition preferentially eliminated non-plaque-associated versus plaque associated microglia. The preferential depletion of non-plaque-associated microglia significantly attenuated tau pathology and neuronal atrophy, indicating their detrimental role during ATN progression. Together, our data reveal the intricacies of microglial activation and their contributions to pathology in a model that recapitulates the combined ATN pathologies of AD. Our data may provide a basis for microglia-targeting therapies selectively targeting detrimental microglial populations, while conserving protective populations.


Blood-based Aβ42 increases in the earliest pre-pathological stage before decreasing with progressive amyloid pathology in preclinical models and human subjects: opening new avenues for prevention.

  • Pablo Botella Lucena‎ et al.
  • Acta neuropathologica‎
  • 2022‎

Blood-based (BB) biomarkers for Aβ and tau can indicate pathological processes in the brain, in the early pathological, even pre-symptomatic stages in Alzheimer's disease. However, the relation between BB biomarkers and AD-related processes in the brain in the earliest pre-pathology stage before amyloid pathology develops, and their relation with total brain concentrations of Aβ and tau, is poorly understood. This stage presents a critical window for the earliest prevention of AD. Preclinical models with well-defined temporal progression to robust amyloid and tau pathology provide a unique opportunity to study this relation and were used here to study the link between BB biomarkers with AD-related processes in pre- and pathological stages. We performed a cross-sectional study at different ages assessing the link between BB concentrations and AD-related processes in the brain. This was complemented with a longitudinal analysis and with analysis of age-related changes in a small cohort of human subjects. We found that BB-tau concentrations increased in serum, correlating with progressive development of tau pathology and with increasing tau aggregates and p-tau concentrations in brain in TauP301S mice (PS19) developing tauopathy. BB-Aβ42 concentrations in serum decreased between 4.5 and 9 months of age, correlating with the progressive development of robust amyloid pathology in APP/PS1 (5xFAD) mice, in line with previous findings. Most importantly, BB-Aβ42 concentrations significantly increased between 1.5 and 4.5 months, i.e., in the earliest pre-pathological stage, before robust amyloid pathology develops in the brain, indicating biphasic BB-Aβ42 dynamics. Furthermore, increasing BB-Aβ42 in the pre-pathological phase, strongly correlated with increasing Aβ42 concentrations in brain. Our subsequent longitudinal analysis of BB-Aβ42 in 5xFAD mice, confirmed biphasic BB-Aβ42, with an initial increase, before decreasing with progressive robust pathology. Furthermore, in human samples, BB-Aβ42 concentrations were significantly higher in old (> 60 years) compared to young (< 50 years) subjects, as well as to age-matched AD patients, further supporting age-dependent increase of Aβ42 concentrations in the earliest pre-pathological phase, before amyloid pathology. Also BB-Aβ40 concentrations were found to increase in the earliest pre-pathological phase both in preclinical models and human subjects, while subsequent significantly decreasing concentrations in the pathological phase were characteristic for BB-Aβ42. Together our data indicate that BB biomarkers reflect pathological processes in brain of preclinical models with amyloid and tau pathology, both in the pathological and pre-pathological phase. Our data indicate a biphasic pattern of BB-Aβ42 in preclinical models and a human cohort. And most importantly, we here show that BB-Aβ increased and correlated with increasing concentrations of Aβ in the brain, in the earliest pre-pathological stage in a preclinical model. Our data thereby identify a novel critical window for prevention, using BB-Aβ as marker for accumulating Aβ in the brain, in the earliest pre-pathological stage, opening new avenues for personalized early preventive strategies against AD, even before amyloid pathology develops.


Motility phenotype in a zebrafish vmat2 mutant.

  • Hildur Sóley Sveinsdóttir‎ et al.
  • PloS one‎
  • 2022‎

In the present study, we characterize a novel zebrafish mutant of solute carrier 18A2 (slc18a2), also known as vesicular monoamine transporter 2 (vmat2), that exhibits a behavioural phenotype partially consistent with human Parkinson´s disease. At six days-post-fertilization, behaviour was analysed and demonstrated that vmat2 homozygous mutant larvae, relative to wild types, show changes in motility in a photomotor assay, altered sleep parameters, and reduced dopamine cell number. Following an abrupt lights-off stimulus mutant larvae initiate larger movements but subsequently inhibit them to a lesser extent in comparison to wild-type larvae. Conversely, during a lights-on period, the mutant larvae are hypomotile. Thigmotaxis, a preference to avoid the centre of a behavioural arena, was increased in homozygotes over heterozygotes and wild types, as was daytime sleep ratio. Furthermore, incubating mutant larvae in pramipexole or L-Dopa partially rescued the motor phenotypes, as did injecting glial cell-derived neurotrophic factor (GDNF) into their brains. This novel vmat2 model represents a tool for high throughput pharmaceutical screens for novel therapeutics, in particular those that increase monoamine transport, and for studies of the function of monoamine transporters.


The NLRP3 inflammasome modulates tau pathology and neurodegeneration in a tauopathy model.

  • Ilie Cosmin Stancu‎ et al.
  • Glia‎
  • 2022‎

An active role of neuroinflammation and the NLRP3 inflammasome in Alzheimer's disease and related tauopathies is increasingly identified, supporting NLRP3 as an interesting therapeutic target. However, its effect on tau-associated neurodegeneration, a key-process in tauopathies, remains unknown. While tau pathology and neurodegeneration are closely correlated, different tau forms may act as culprits in both characteristics and NLRP3-dependent microglial processes may differently affect both processes, indicating the need to study the role of NLRP3 in both processes concomitantly. To study the role of NLRP3 on tau pathology, prion-like propagation and tau-associated neurodegeneration we generated crosses of NLRP3 deficient mice with tauP301S (PS19) transgenic mice. In this model we studied non-seeded tau pathology and hippocampal atrophy, reminiscent characteristics of tauopathies. Tau pathology in hippocampus and cortex was significantly decreased in tau.NLRP3-/- versus tau.NLRP3+/+ mice. Importantly, tau.NLRP3-/- mice also displayed significantly decreased hippocampal atrophy, indicating a role of NLRP3 in neurodegeneration. We furthermore assessed the effect of NLRP3 deficiency on tau propagation and associated hippocampal atrophy. NLRP3 deficiency significantly decreased prion-like seeding and propagation of tau pathology, reflected in decreased tau pathology in ipsi- and contralateral hippocampus and cortex in tau.NLRP3-/- following tau seeding. Most importantly, hippocampal atrophy was significantly less in tau-seeded tau.NLRP3-/- mice at 8 months. We here demonstrate for the first time that NLRP3 activation affects tau-associated neurodegeneration and seeded and non-seeded tau pathology, hence affecting key molecular processes in tauopathies. Our data thereby provide key-information in the validation of NLRP3 inflammasome as therapeutic target for AD and related tauopathies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: