2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

Genome-wide differential expression of synaptic long noncoding RNAs in autism spectrum disorder.

  • Y Wang‎ et al.
  • Translational psychiatry‎
  • 2015‎

A genome-wide differential expression of long noncoding RNAs (lncRNAs) was identified in blood specimens of autism spectrum disorder (ASD). A total of 3929 lncRNAs were found to be differentially expressed in ASD peripheral leukocytes, including 2407 that were upregulated and 1522 that were downregulated. Simultaneously, 2591 messenger RNAs (mRNAs), including 1789 upregulated and 821 downregulated, were also identified in ASD leukocytes. Functional pathway analysis of these lncRNAs revealed neurological pathways of the synaptic vesicle cycling, long-term depression and long-term potentiation to be primarily involved. Thirteen synaptic lncRNAs, including nine upregulated and four downregulated, and 19 synaptic mRNAs, including 12 upregulated and seven downregulated, were identified as being differentially expressed in ASD. Our identification of differential expression of synaptic lncRNAs and mRNAs suggested that synaptic vesicle transportation and cycling are important for the delivery of synaptosomal protein(s) between presynaptic and postsynaptic membranes in ASD. Finding of 19 lncRNAs, which are the antisense, bi-directional and intergenic, of HOX genes may lead us to investigate the role of HOX genes involved in the development of ASD. Discovery of the lncRNAs of SHANK2-AS and BDNF-AS, the natural antisense of genes SHANK2 and BDNF, respectively, indicates that in addition to gene mutations, deregulation of lncRNAs on ASD-causing gene loci presents a new approach for exploring possible epigenetic mechanisms underlying ASD. Our study also opened a new avenue for exploring the use of lncRNA(s) as biomarker(s) for the early detection of ASD.


Aberrant expression and biological significance of Sox2, an embryonic stem cell transcriptional factor, in ALK-positive anaplastic large cell lymphoma.

  • P Gelebart‎ et al.
  • Blood cancer journal‎
  • 2012‎

Sox2 (sex-determining region Y-Box) is one of the master transcriptional factors that are important in maintaining the pluripotency of embryonic stem cells (ESCs). In line with this function, Sox2 expression is largely restricted to ESCs and somatic stem cells. We report that Sox2 is expressed in cell lines and tumor samples derived from ALK-positive anaplastic large cell lymphoma (ALK(+)ALCL), for which the normal cellular counterpart is believed to be mature T-cells. The expression of Sox2 in ALK(+)ALCL can be attributed to nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), the oncogenic fusion protein carrying a central pathogenetic role in these tumors. By confocal microscopy, Sox2 protein was detectable in virtually all cells in ALK(+)ALCL cell lines. However, the transcriptional activity of Sox2, as assessed using a Sox2-responsive reporter construct, was detectable only in a small proportion of cells. Importantly, downregulation of Sox2 using short interfering RNA in isolated Sox2(active) cells, but not Sox2(inactive) cells, resulted in a significant decrease in cell growth, invasiveness and tumorigenicity. To conclude, ALK(+)ALCL represents the first example of a hematologic malignancy that aberrantly expresses Sox2, which represents a novel mechanism by which NPM-ALK mediates tumorigenesis. We also found that the transcriptional activity and oncogenic effects of Sox2 can be heterogeneous in cancer cells.


NPM-ALK mediates phosphorylation of MSH2 at tyrosine 238, creating a functional deficiency in MSH2 and the loss of mismatch repair.

  • K M Bone‎ et al.
  • Blood cancer journal‎
  • 2015‎

The vast majority of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK+ALCL) tumors express the characteristic oncogenic fusion protein NPM-ALK, which mediates tumorigenesis by exerting its constitutive tyrosine kinase activity on various substrates. We recently identified MSH2, a protein central to DNA mismatch repair (MMR), as a novel binding partner and phosphorylation substrate of NPM-ALK. Here, using liquid chromatography-mass spectrometry, we report for the first time that MSH2 is phosphorylated by NPM-ALK at a specific residue, tyrosine 238. Using GP293 cells transfected with NPM-ALK, we confirmed that the MSH2(Y238F) mutant is not tyrosine phosphorylated. Furthermore, transfection of MSH2(Y238F) into these cells substantially decreased the tyrosine phosphorylation of endogenous MSH2. Importantly, gene transfection of MSH2(Y238F) abrogated the binding of NPM-ALK with endogenous MSH2, re-established the dimerization of MSH2:MSH6 and restored the sensitivity to DNA mismatch-inducing drugs, indicative of MMR return. Parallel findings were observed in two ALK+ALCL cell lines, Karpas 299 and SUP-M2. In addition, we found that enforced expression of MSH2(Y238F) into ALK+ALCL cells alone was sufficient to induce spontaneous apoptosis. In conclusion, our findings have identified NPM-ALK-induced phosphorylation of MSH2 at Y238 as a crucial event in suppressing MMR. Our studies have provided novel insights into the mechanism by which oncogenic tyrosine kinases disrupt MMR.


Expressions of miR-525-3p and its target gene SEMG1 in the spermatozoa of patients with asthenozoospermia.

  • Q-Z Zhou‎ et al.
  • Andrology‎
  • 2019‎

Semenogelin 1 (SEMG1) is an important secretory protein in spermatozoa involved in the formation of a gel matrix encasing ejaculated spermatozoa. Previous studies show that the SEMG1 gene is highly expressed in spermatozoa from patients with asthenozoospermia (AZS); however, the underlying molecular mechanisms are not yet clear.


Potential metabolite markers of schizophrenia.

  • J Yang‎ et al.
  • Molecular psychiatry‎
  • 2013‎

Schizophrenia is a severe mental disorder that affects 0.5-1% of the population worldwide. Current diagnostic methods are based on psychiatric interviews, which are subjective in nature. The lack of disease biomarkers to support objective laboratory tests has been a long-standing bottleneck in the clinical diagnosis and evaluation of schizophrenia. Here we report a global metabolic profiling study involving 112 schizophrenic patients and 110 healthy subjects, who were divided into a training set and a test set, designed to identify metabolite markers. A panel of serum markers consisting of glycerate, eicosenoic acid, β-hydroxybutyrate, pyruvate and cystine was identified as an effective diagnostic tool, achieving an area under the receiver operating characteristic curve (AUC) of 0.945 in the training samples (62 patients and 62 controls) and 0.895 in the test samples (50 patients and 48 controls). Furthermore, a composite panel by the addition of urine β-hydroxybutyrate to the serum panel achieved a more satisfactory accuracy, which reached an AUC of 1 in both the training set and the test set. Multiple fatty acids and ketone bodies were found significantly (P<0.01) elevated in both the serum and urine of patients, suggesting an upregulated fatty acid catabolism, presumably resulting from an insufficiency of glucose supply in the brains of schizophrenia patients.


Canine GM2-Gangliosidosis Sandhoff Disease Associated with a 3-Base Pair Deletion in the HEXB Gene.

  • P Wang‎ et al.
  • Journal of veterinary internal medicine‎
  • 2018‎

GM2-gangliosidosis is a fatal neurodegenerative lysosomal storage disease (LSD) caused by deficiency of either β-hexosaminidase A (Hex-A) and β-hexosaminidase B (Hex-B) together, or the GM2 activator protein. Clinical signs can be variable and are not pathognomonic for the specific, causal deficiency.


Mice deleted for cell division cycle 73 gene develop parathyroid and uterine tumours: model for the hyperparathyroidism-jaw tumour syndrome.

  • G V Walls‎ et al.
  • Oncogene‎
  • 2017‎

The hyperparathyroidism-jaw tumour (HPT-JT) syndrome is an autosomal dominant disorder characterized by occurrence of parathyroid tumours, often atypical adenomas and carcinomas, ossifying jaw fibromas, renal tumours and uterine benign and malignant neoplasms. HPT-JT is caused by mutations of the cell division cycle 73 (CDC73) gene, located on chromosome 1q31.2 and encodes a 531 amino acid protein, parafibromin. To facilitate in vivo studies of Cdc73 in tumourigenesis we generated conventional (Cdc73+/-) and conditional parathyroid-specific (Cdc73+/L/PTH-Cre and Cdc73L/L/PTH-Cre) mouse models. Mice were aged to 18-21 months and studied for survival, tumour development and proliferation, and serum biochemistry, and compared to age-matched wild-type (Cdc73+/+ and Cdc73+/+/PTH-Cre) littermates. Survival of Cdc73+/- mice, when compared to Cdc73+/+ mice was reduced (Cdc73+/-=80%; Cdc73+/+=90% at 18 months of age, P<0.05). Cdc73+/-, Cdc73+/L/PTH-Cre and Cdc73L/L/PTH-Cre mice developed parathyroid tumours, which had nuclear pleomorphism, fibrous septation and increased galectin-3 expression, consistent with atypical parathyroid adenomas, from 9 months of age. Parathyroid tumours in Cdc73+/-, Cdc73+/L/PTH-Cre and Cdc73L/L/PTH-Cre mice had significantly increased proliferation, with rates >fourfold higher than that in parathyroid glands of wild-type littermates (P<0.0001). Cdc73+/-, Cdc73+/L/PTH-Cre and Cdc73L/L/PTH-Cre mice had higher mean serum calcium concentrations than wild-type littermates, and Cdc73+/- mice also had increased mean serum parathyroid hormone (PTH) concentrations. Parathyroid tumour development, and elevations in serum calcium and PTH, were similar in males and females. Cdc73+/- mice did not develop bone or renal tumours but female Cdc73+/- mice, at 18 months of age, had uterine neoplasms comprising squamous metaplasia, adenofibroma and adenomyoma. Uterine neoplasms, myometria and jaw bones of Cdc73+/- mice had increased proliferation rates that were 2-fold higher than in Cdc73+/+ mice (P<0.05). Thus, our studies, which have established mouse models for parathyroid tumours and uterine neoplasms that develop in the HPT-JT syndrome, provide in vivo models for future studies of these tumours.


MYPT1 Down-regulation by Lipopolysaccharide-SIAH1/2 E3 Ligase-Ubiquitin-Proteasomal Degradation Contributes to Colonic Obstruction of Hirschsprung Disease.

  • W Zhao‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2020‎

No abstract available


Effects of Water-misting Sprays with Forced Ventilation after Transport during Summer on Meat Quality, Stress Parameters, Glycolytic Potential and Microstructures of Muscle in Broilers.

  • N N Jiang‎ et al.
  • Asian-Australasian journal of animal sciences‎
  • 2015‎

Effects of water-misting sprays with forced ventilation after transport during summer on meat quality, stress parameters, glycolytic potential and microstructures of muscle in broilers were investigated. A total of 105 mixed-sex Arbor Acres broilers were divided into three treatment groups: i) 45-min transport without rest (T group), ii) 45-min transport with 1-h rest (TR group), iii) 45-min transport with 15-min water-misting sprays with forced ventilation and 45-min rest (TWFR group). The results showed the TWFR group significantly increased (p<0.05) initial muscle pH (pHi) and ultimate pH (pHu) and significantly reduced L* (p<0.05), drip loss, cook loss, creatine kinase, lactate dehydrogenase activity, plasma glucose content, lactate and glycolytic potential when compared with other groups. Microstructure of the muscle from TWFR group broilers under light microscopy showed smaller intercellular spaces among muscle fibers and bundles compared with T group. In conclusion this study indicated water-misting sprays with forced ventilation after transport could relieve the stress caused by transport under high temperature, which was favorable for the broilers' welfare. Furthermore, water-misting sprays with forced ventilation after transport slowed down the postmortem glycolysis rate and inhibited the occurrence of PSE-like meat in broilers. Although rest after transport could also improve the meat quality, the effect was not as significant as water-misting sprays with forced ventilation after transport.


miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF-β signalling pathway.

  • Z Zhu‎ et al.
  • British journal of cancer‎
  • 2015‎

Aberrant Smad7 expression contributes to the invasion and metastasis of pancreatic cancer cells. However, the potential mechanism underlying aberrant Smad7 expression in human pancreatic ductal adenocarcinoma (PDAC) remains largely unknown.


Knockdown of long non-coding RNA XIST increases blood-tumor barrier permeability and inhibits glioma angiogenesis by targeting miR-137.

  • H Yu‎ et al.
  • Oncogenesis‎
  • 2017‎

Antiangiogenic therapy plays a significant role in combined glioma treatment. However, poor permeability of the blood-tumor barrier (BTB) limits the transport of chemotherapeutic agents, including antiangiogenic drugs, into tumor tissues. Long non-coding RNAs (lncRNAs) have been implicated in various diseases, especially malignant tumors. The present study found that lncRNA X-inactive-specific transcript (XIST) was upregulated in endothelial cells that were obtained in a BTB model in vitro. XIST knockdown increased BTB permeability and inhibited glioma angiogenesis. The analysis of the mechanism of action revealed that the reduction of XIST inhibited the expression of the transcription factor forkhead box C1 (FOXC1) and zonula occludens 2 (ZO-2) by upregulating miR-137. FOXC1 decreased BTB permeability by increasing the promoter activity and expression of ZO-1 and occludin, and promoted glioma angiogenesis by increasing the promoter activity and expression of chemokine (C-X-C motif) receptor 7b (CXCR7). Overall, the present study demonstrates that XIST plays a pivotal role in BTB permeability and glioma angiogenesis, and the inhibition of XIST may be a potential target for the clinical management of glioma.


Lister strain of vaccinia virus armed with endostatin-angiostatin fusion gene as a novel therapeutic agent for human pancreatic cancer.

  • J R Tysome‎ et al.
  • Gene therapy‎
  • 2009‎

Survival after pancreatic cancer remains poor despite incremental advances in surgical and adjuvant therapy, and new strategies for treatment are needed. Oncolytic virotherapy is an attractive approach for cancer treatment. In this study, we have evaluated the effectiveness of the Lister vaccine strain of vaccinia virus armed with the endostatin-angiostatin fusion gene (VVhEA) as a novel therapeutic approach for pancreatic cancer. The Lister vaccine strain of vaccinia virus was effective against all human pancreatic carcinoma cells tested in vitro, especially those insensitive to oncolytic adenovirus. The virus displayed inherently high selectivity for cancer cells, sparing normal cells both in vitro and in vivo, with effective infection of tumors after both intravenous (i.v.) and intratumoral (i.t.) administrations. The expression of the endostatin-angiostatin fusion protein was confirmed in a pancreatic cancer model both in vitro and in vivo, with evidence of inhibition of angiogenesis. This novel vaccinia virus showed significant antitumor potency in vivo against the Suit-2 model by i.t. administration. This study suggests that the novel Lister strain of vaccinia virus armed with the endostatin-angiostatin fusion gene is a potential therapeutic agent for pancreatic cancer.


[Anti-inflammatory effect of radix Angelicae sinensis].

  • H Hu‎ et al.
  • Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica‎
  • 1991‎

Radix Angelicae Sinensis (RAS) decoction can markedly inhibit acute and chronic inflammation caused by various phlogistic agents. Similar effects are equally seen in adrenalectomized rats. RAS can also suppress the biosynthesis or release of prostaglandin E2 in inflamed tissues induced by carrageenan, as well as significantly decrease the hemolytic activity of complement bypass, but shows no effect on the inflammation caused by histamine.


[Correction of the pathogenic mutation in the G6PC3 gene by adenine base editing in mutant embryos].

  • M Hong‎ et al.
  • Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi‎
  • 2023‎

Objective: To determine whether the adenine base editor (ABE7.10) can be used to fix harmful mutations in the human G6PC3 gene. Methods: To investigate the safety of base-edited embryos, off-target analysis by deep sequencing was used to examine the feasibility and editing efficiency of various sgRNA expression vectors. The human HEK293T mutation models and human embryos were also used to test the feasibility and editing efficiency of correction. Results: ①The G6PC3(C295T) mutant cell model was successfully created. ②In the G6PC3(C295T) mutant cell model, three distinct Re-sgRNAs were created and corrected, with base correction efficiency ranging from 8.79% to 19.56% . ③ ABE7.10 could successfully fix mutant bases in the human pathogenic embryo test; however, base editing events had also happened in other locations. ④ With the exception of one noncoding site, which had a high safety rate, deep sequencing analysis revealed that the detection of 32 probable off-target sites was <0.5% . Conclusion: This study proposes a new base correction strategy based on human pathogenic embryos; however, it also produces a certain nontarget site editing, which needs to be further analyzed on the PAM site or editor window.


Functional expression of Drosophila para sodium channels. Modulation by the membrane protein TipE and toxin pharmacology.

  • J W Warmke‎ et al.
  • The Journal of general physiology‎
  • 1997‎

The Drosophila para sodium channel alpha subunit was expressed in Xenopus oocytes alone and in combination with tipE, a putative Drosophila sodium channel accessory subunit. Coexpression of tipE with para results in elevated levels of sodium currents and accelerated current decay. Para/TipE sodium channels have biophysical and pharmacological properties similar to those of native channels. However, the pharmacology of these channels differs from that of vertebrate sodium channels: (a) toxin II from Anemonia sulcata, which slows inactivation, binds to Para and some mammalian sodium channels with similar affinity (Kd congruent with 10 nM), but this toxin causes a 100-fold greater decrease in the rate of inactivation of Para/TipE than of mammalian channels; (b) Para sodium channels are >10-fold more sensitive to block by tetrodotoxin; and (c) modification by the pyrethroid insecticide permethrin is >100-fold more potent for Para than for rat brain type IIA sodium channels. Our results suggest that the selective toxicity of pyrethroid insecticides is due at least in part to the greater affinity of pyrethroids for insect sodium channels than for mammalian sodium channels.


Simultaneous polychromatic flow cytometric detection of multiple forms of regulated cell death.

  • D Bergamaschi‎ et al.
  • Apoptosis : an international journal on programmed cell death‎
  • 2019‎

Currently the study of Regulated Cell Death (RCD) processes is limited to the use of lysed cell populations for Western blot analysis of each separate RCD process. We have previously shown that intracellular antigen flow cytometric analysis of RIP3, Caspase-3 and cell viability dye allowed the determination of levels of apoptosis (Caspase-3+ ve/RIP3- ve), necroptosis (RIP3Hi + ve/Caspase-3- ve) and RIP1-dependent apoptosis (Caspase-3+ ve/RIP3+ ve) in a single Jurkat cell population. The addition of more intracellular markers allows the determination of the incidence of parthanatos (PARP), DNA Damage Response (DDR, H2AX), H2AX hyper-activation of PARP (H2AX/PARP) autophagy (LC3B) and ER stress (PERK), thus allowing the identification of 124 sub-populations both within live and dead cell populations. Shikonin simultaneously induced Jurkat cell apoptosis and necroptosis the degree of which can be shown flow cytometrically together with the effects of blockade of these forms of cell death by zVAD and necrostatin-1 have on specific RCD populations including necroptosis, early and late apoptosis and RIP1-dependent apoptosis phenotypes in live and dead cells. Necrostatin-1 and zVAD was shown to modulate levels of shikonin induced DDR, hyper-action of PARP and parthanatos in the four forms of RCD processes analysed. LC3B was up-regulated by combined treatment of zVAD with chloroquine which also revealed that DNA damage was reduced in live cells but enhanced in dead cells indicating the role of autophagy in maintaining cell health. This approach to RCD research should be a great advance to understanding the mechanisms of drugs and their effects upon RCD populations.


Inhibition of human positive cofactor 4 radiosensitizes human esophageal squmaous cell carcinoma cells by suppressing XLF-mediated nonhomologous end joining.

  • D Qian‎ et al.
  • Cell death & disease‎
  • 2014‎

Radiotherapy has the widest application to esophageal squamous cell carcinoma (ESCC) patients. Factors associated with DNA damage repair have been shown to function in cell radiosensitivity. Human positive cofactor 4 (PC4) has a role in nonhomologous end joining (NHEJ) and is involved in DNA damage repair. However, the clinical significance and biological role of PC4 in cancer progression and cancer cellular responses to chemoradiotherapy (CRT) remain largely unknown. The aim of the present study was to investigate the potential roles of PC4 in the radiosensitivity of ESCC. In this study, we showed that knockdown of PC4 substantially increased ESCC cell sensitivity to ionizing radiation (IR) both in vitro and in vivo and enhanced radiation-induced apoptosis and mitotic catastrophe (MC). Importantly, we demonstrated that silencing of PC4 suppressed NHEJ by downregulating the expression of XLF in ESCC cells, whereas reconstituting the expression of XLF protein in the PC4-knockdown ESCC cells restored NHEJ activity and radioresistance. Moreover, high expression of PC4 positively correlated with ESCC resistance to CRT and was an independent predictor for short disease-specific survival of ESCC patients in both of our cohorts. These findings suggest that PC4 protects ESCC cells from IR-induced death by enhancing the NHEJ-promoting activity of XLF and could be used as a novel radiosensitivity predictor and a promising therapeutic target for ESCCs.


MicroRNA-21 regulates T-cell apoptosis by directly targeting the tumor suppressor gene Tipe2.

  • Q Ruan‎ et al.
  • Cell death & disease‎
  • 2014‎

MicroRNAs (MiRs) are short noncoding RNAs that can regulate gene expression. It has been reported that miR-21 suppresses apoptosis in activated T cells, but the molecular mechanism remains undefined. Tumor suppressor Tipe2 (or tumor necrosis factor-α-induced protein 8 (TNFAIP8)-like 2 (TNFAIP8L2)) is a newly identified anti-inflammatory protein of the TNFAIP8 family that is essential for maintaining immune homeostasis. We report here that miR-21 is a direct target of nuclear factor-κB and could regulate Tipe2 expression in a Tipe2 coding region-dependent manner. In activated T cells and macrophages, Tipe2 expression was markedly downregulated, whereas miR-21 expression was upregulated. Importantly, Tipe2-deficient T cells were significantly less sensitive to apoptosis. Conversely, overexpression of Tipe2 in EL-4 T cells increased their susceptibility to activation-induced apoptosis. Therefore, Tipe2 provides a molecular bridge between miR-21 and cell apoptosis; miR-21 suppresses apoptosis in activated T cells at least in part through directly targeting tumor suppressor gene Tipe2.


Suppression of tumor angiogenesis by targeting the protein neddylation pathway.

  • W-T Yao‎ et al.
  • Cell death & disease‎
  • 2014‎

Inhibition of protein neddylation, particularly cullin neddylation, has emerged as a promising anticancer strategy, as evidenced by the antitumor activity in preclinical studies of the Nedd8-activating enzyme (NAE) inhibitor MLN4924. This small molecule can block the protein neddylation pathway and is now in clinical trials. We and others have previously shown that the antitumor activity of MLN4924 is mediated by its ability to induce apoptosis, autophagy and senescence in a cell context-dependent manner. However, whether MLN4924 has any effect on tumor angiogenesis remains unexplored. Here we report that MLN4924 inhibits angiogenesis in various in vitro and in vivo models, leading to the suppression of tumor growth and metastasis in highly malignant pancreatic cancer, indicating that blockage of angiogenesis is yet another mechanism contributing to its antitumor activity. At the molecular level, MLN4924 inhibits Cullin-RING E3 ligases (CRLs) by cullin deneddylation, causing accumulation of RhoA at an early stage to impair angiogenic activity of vascular endothelial cells and subsequently DNA damage response, cell cycle arrest and apoptosis due to accumulation of other tumor-suppressive substrates of CRLs. Furthermore, we showed that inactivation of CRLs, via small interfering RNA (siRNA) silencing of its essential subunit ROC1/RBX1, recapitulates the antiangiogenic effect of MLN4924. Taken together, our study demonstrates a previously unrecognized role of neddylation in the regulation of tumor angiogenesis using both pharmaceutical and genetic approaches, and provides proof of concept evidence for future development of neddylation inhibitors (such as MLN4924) as a novel class of antiangiogenic agents.


Bevacizumab and gefitinib enhanced whole-brain radiation therapy for brain metastases due to non-small-cell lung cancer.

  • R F Yang‎ et al.
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas‎
  • 2017‎

Non-small-cell lung cancer (NSCLC) patients who experience brain metastases are usually associated with poor prognostic outcomes. This retrospective study proposed to assess whether bevacizumab or gefitinib can be used to improve the effectiveness of whole brain radiotherapy (WBRT) in managing patients with brain metastases. A total of 218 NSCLC patients with multiple brain metastases were retrospectively included in this study and were randomly allocated to bevacizumab-gefitinib-WBRT group (n=76), gefitinib-WBRT group (n=77) and WBRT group (n=75). Then, tumor responses were evaluated every 2 months based on Response Evaluation Criteria in Solid Tumors version 1.0. Karnofsky performance status and neurologic examination were documented every 6 months after the treatment. Compared to the standard WBRT, bevacizumab and gefitinib could significantly enhance response rate (RR) and disease control rate (DCR) of WBRT (P<0.001). At the same time, RR and DCR of patients who received bevacizumab-gefitinib-WBRT were higher than those who received gefitinib-WBRT. The overall survival (OS) rates and progression-free survival (PFS) rates also differed significantly among the bevacizumab-gefitinib-WBRT (48.6 and 29.8%), gefitinib-WBRT (36.7 and 29.6%) and WBRT (9.8 and 14.6%) groups (P<0.05). Although bevacizumab-gefitinib-WBRT was slightly more toxic than gefitinib-WBRT, the toxicity was tolerable. As suggested by prolonged PFS and OS status, bevacizumab substantially improved the overall efficacy of WBRT in the management of patients with NSCLC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: