Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

The Histone Chaperone FACT Coordinates H2A.X-Dependent Signaling and Repair of DNA Damage.

  • Sandra Piquet‎ et al.
  • Molecular cell‎
  • 2018‎

Safeguarding cell function and identity following a genotoxic stress challenge entails a tight coordination of DNA damage signaling and repair with chromatin maintenance. How this coordination is achieved and with what impact on chromatin integrity remains elusive. Here, we address these questions by investigating the mechanisms governing the distribution in mammalian chromatin of the histone variant H2A.X, a central player in damage signaling. We reveal that H2A.X is deposited de novo at sites of DNA damage in a repair-coupled manner, whereas the H2A.Z variant is evicted, thus reshaping the chromatin landscape at repair sites. Our mechanistic studies further identify the histone chaperone FACT (facilitates chromatin transcription) as responsible for the deposition of newly synthesized H2A.X. Functionally, we demonstrate that FACT potentiates H2A.X-dependent signaling of DNA damage. We propose that new H2A.X deposition in chromatin reflects DNA damage experience and may help tailor DNA damage signaling to repair progression.


Imaging the response to DNA damage in heterochromatin domains reveals core principles of heterochromatin maintenance.

  • Anna Fortuny‎ et al.
  • Nature communications‎
  • 2021‎

Heterochromatin is a critical chromatin compartment, whose integrity governs genome stability and cell fate transitions. How heterochromatin features, including higher-order chromatin folding and histone modifications associated with transcriptional silencing, are maintained following a genotoxic stress challenge is unknown. Here, we establish a system for targeting UV damage to pericentric heterochromatin in mammalian cells and for tracking the heterochromatin response to UV in real time. We uncover profound heterochromatin compaction changes during repair, orchestrated by the UV damage sensor DDB2, which stimulates linker histone displacement from chromatin. Despite massive heterochromatin unfolding, heterochromatin-specific histone modifications and transcriptional silencing are maintained. We unveil a central role for the methyltransferase SETDB1 in the maintenance of heterochromatic histone marks after UV. SETDB1 coordinates histone methylation with new histone deposition in damaged heterochromatin, thus protecting cells from genome instability. Our data shed light on fundamental molecular mechanisms safeguarding higher-order chromatin integrity following DNA damage.


Real-Time Tracking of Parental Histones Reveals Their Contribution to Chromatin Integrity Following DNA Damage.

  • Salomé Adam‎ et al.
  • Molecular cell‎
  • 2016‎

Chromatin integrity is critical for cell function and identity but is challenged by DNA damage. To understand how chromatin architecture and the information that it conveys are preserved or altered following genotoxic stress, we established a system for real-time tracking of parental histones, which characterize the pre-damage chromatin state. Focusing on histone H3 dynamics after local UVC irradiation in human cells, we demonstrate that parental histones rapidly redistribute around damaged regions by a dual mechanism combining chromatin opening and histone mobilization on chromatin. Importantly, parental histones almost entirely recover and mix with new histones in repairing chromatin. Our data further define a close coordination of parental histone dynamics with DNA repair progression through the damage sensor DDB2 (DNA damage-binding protein 2). We speculate that this mechanism may contribute to maintaining a memory of the original chromatin landscape and may help preserve epigenome stability in response to DNA damage.


Preclinical corrective gene transfer in xeroderma pigmentosum human skin stem cells.

  • Emilie Warrick‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2012‎

Xeroderma pigmentosum (XP) is a devastating disease associated with dramatic skin cancer proneness. XP cells are deficient in nucleotide excision repair (NER) of bulky DNA adducts including ultraviolet (UV)-induced mutagenic lesions. Approaches of corrective gene transfer in NER-deficient keratinocyte stem cells hold great hope for the long-term treatment of XP patients. To face this challenge, we developed a retrovirus-based strategy to safely transduce the wild-type XPC gene into clonogenic human primary XP-C keratinocytes. De novo expression of XPC was maintained in both mass population and derived independent candidate stem cells (holoclones) after more than 130 population doublings (PD) in culture upon serial propagation (>10(40) cells). Analyses of retrovirus integration sequences in isolated keratinocyte stem cells suggested the absence of adverse effects such as oncogenic activation or clonal expansion. Furthermore, corrected XP-C keratinocytes exhibited full NER capacity as well as normal features of epidermal differentiation in both organotypic skin cultures and in a preclinical murine model of human skin regeneration in vivo. The achievement of a long-term genetic correction of XP-C epidermal stem cells constitutes the first preclinical model of ex vivo gene therapy for XP-C patients.


Dissecting regulatory pathways for transcription recovery following DNA damage reveals a non-canonical function of the histone chaperone HIRA.

  • Déborah Bouvier‎ et al.
  • Nature communications‎
  • 2021‎

Transcription restart after a genotoxic challenge is a fundamental yet poorly understood process. Here, we dissect the interplay between transcription and chromatin restoration after DNA damage by focusing on the human histone chaperone complex HIRA, which is required for transcription recovery post UV. We demonstrate that HIRA is recruited to UV-damaged chromatin via the ubiquitin-dependent segregase VCP to deposit new H3.3 histones. However, this local activity of HIRA is dispensable for transcription recovery. Instead, we reveal a genome-wide function of HIRA in transcription restart that is independent of new H3.3 and not restricted to UV-damaged loci. HIRA coordinates with ASF1B to control transcription restart by two independent pathways: by stabilising the associated subunit UBN2 and by reducing the expression of the transcription repressor ATF3. Thus, HIRA primes UV-damaged chromatin for transcription restart at least in part by relieving transcription inhibition rather than by depositing new H3.3 as an activating bookmark.


Mitotic chromatin marking governs asymmetric segregation of DNA damage.

  • Juliette Ferrand‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The faithful segregation of intact genetic material and the perpetuation of chromatin states through mitotic cell divisions are pivotal for maintaining cell function and identity across cell generations. However, most exogenous mutagens generate long-lasting DNA lesions that are segregated during mitosis. How this segregation is controlled is unknown. Here, we uncover a mitotic chromatin-marking pathway that governs the segregation of UV-induced damage in human cells. Our mechanistic analyses reveal two layers of control: histone ADP-ribosylation, and the incorporation of newly synthesized histones at UV damage sites, that both prevent local mitotic phosphorylations on histone H3 serines. Functionally, this chromatin-marking pathway drives the asymmetric segregation of UV damage in the cell progeny with potential consequences on daughter cell fate. We propose that this mechanism may help preserve the integrity of stem cell compartments during asymmetric cell divisions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: