2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Age effects on the P300 potential and the corresponding fMRI BOLD-signal.

  • G Juckel‎ et al.
  • NeuroImage‎
  • 2012‎

Age has been reported to influence amplitude and latency of the P300 potential. Nevertheless, it is not yet fully understood which brain regions are responsible for these effects. The aim of this study was to investigate age-effects on the P300 potential and the simultaneously acquired BOLD signal of functional MRI. 32 healthy male subjects were investigated using an auditory oddball paradigm. The functional MRI data were acquired in temporal synchrony to the task. The evoked potential data were recorded during the intervals in between MR image acquisitions in order to reduce the influence of the scanner noise on the presentation of the tones and to reduce gradient artifacts. The age-effects were calculated by means of regression analyses. In addition, brain regions modulated by the task-induced amplitude variation of the P300 were identified (single trial analysis). The results indicated an age effect on the P300 amplitude. Younger subjects demonstrated increased parietal P300 amplitudes and increased BOLD responses in a network of brain regions including the anterior and posterior cingulate cortex, the insula, the temporo-parietal junction, the superior temporal gyrus, the caudate body, the amygdala and the parahippocampal gyrus. Single trial coupling of EEG and fMRI indicated that P300 amplitudes were predominantly associated with neural responses in the anterior cingulate cortex, the putamen and temporal brain areas. Taken together, the results indicate diminished neural responses in older compared to younger subjects especially in frontal, temporo-parietal and subcortical brain regions.


Single-trial coupling of the gamma-band response and the corresponding BOLD signal.

  • C Mulert‎ et al.
  • NeuroImage‎
  • 2010‎

Oscillations in the gamma-band frequency range have been described to be more closely connected to hemodynamic changes as assessed with functional magnetic resonance imaging (fMRI) than other aspects of neuronal activity. In addition, gamma-band oscillations have attracted much interest during the last few years since they are thought to play a crucial role in many aspects of brain function related to perception and cognition. It was the aim of the present simultaneous EEG-fMRI study to identify brain regions specifically involved in the generation of the auditory gamma-band response (GBR) using single-trial coupling of EEG and fMRI. Ten healthy subjects participated in this study. Three different runs of an auditory choice reaction task with increasing difficulty were performed. Brain activity was recorded simultaneously with high density EEG (61 channels) and fMRI (1.5 T). BOLD correlates of the GBR have been predicted using the single-trial amplitude of the GBR. Reaction times (p<0.001), error rates (p<0.05) and self-ratings of task difficulty and effort demands (p<0.001) were related to the level of difficulty in the task. In addition, we found a significant influence of task difficulty on the amplitude of the GBR at Cz (p<0.05). Using single-trial coupling of EEG and fMRI GBR-specific activations were found only in the auditory cortex, the thalamus and the anterior cingulate cortex (ACC) in the most difficult run. Single-trial coupling might be a useful method in order to increase our knowledge about the functional neuroanatomy of "neural ensembles" coupled by 40 Hz oscillations.


Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: a standardized low resolution tomography (sLORETA) study.

  • D Keeser‎ et al.
  • NeuroImage‎
  • 2011‎

Prefrontal transcranial direct current stimulation (tDCS) with the anode placed on the left dorsolateral prefrontal cortex (DLPFC) has been reported to enhance working memory in healthy subjects and to improve mood in major depression. However, its putative antidepressant, cognitive and behavior action is not well understood. Here, we evaluated the distribution of neuronal electrical activity changes after anodal tDCS of the left DLPFC and cathodal tDCS of the right supraorbital region using spectral power analysis and standardized low resolution tomography (sLORETA). Ten healthy subjects underwent real and sham tDCS on separate days in a double-blind, placebo-controlled cross-over trial. Anodal tDCS was applied for 20 min at 2 mA intensity over the left DLPFC, while the cathode was positioned over the contralateral supraorbital region. After tDCS, EEG was recorded during an eyes-closed resting state followed by a working memory (n-back) task. Statistical non-parametric mapping showed reduced left frontal delta activity in the real tDCS condition. Specifically, a significant reduction of mean current densities (sLORETA) for the delta band was detected in the left subgenual PFC, the anterior cingulate and in the left medial frontal gyrus. Moreover, the effect was strongest for the first 5 min (p<0.01). The following n-back task revealed a positive impact of prefrontal tDCS on error rate, accuracy and reaction time. This was accompanied by increased P2- and P3- event-related potentials (ERP) component-amplitudes for the 2-back condition at the electrode Fz. A source localization using sLORETA for the time window 250-450 ms showed enhanced activity in the left parahippocampal gyrus for the 2-back condition. These results suggest that anodal tDCS of the left DLPFC and/or cathodal tDCS of the contralateral supraorbital region may modulate regional electrical activity in the prefrontal and anterior cingulate cortex in addition to improving working memory performance.


Enhancing educational and vocational recovery in adolescents and young adults with early psychosis through Supported Employment and Education (SEEearly): study protocol for a multicenter randomized controlled trial.

  • D Jäckel‎ et al.
  • Trials‎
  • 2023‎

Psychotic disorders often develop a chronic course with devastating consequences for individuals, families, and societies. Early intervention programs for people in the first 5 years after the initial psychotic episode (early psychosis) can significantly improve the outcome and are therefore strongly recommended in national and international guidelines. However, most early intervention programs still focus on improving symptoms and relapse prevention, rather than targeting educational and vocational recovery. The aim of the present study is to explore the effects of Supported Employment and Education (SEE) following the Individual Placement and Support (IPS) model in people with early psychosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: