Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Glucose-6-phosphate dehydrogenase contributes to the regulation of glucose uptake in skeletal muscle.

  • Robert S Lee-Young‎ et al.
  • Molecular metabolism‎
  • 2016‎

The development of skeletal muscle insulin resistance is an early physiological defect, yet the intracellular mechanisms accounting for this metabolic defect remained unresolved. Here, we have examined the role of glucose-6-phosphate dehydrogenase (G6PDH) activity in the pathogenesis of insulin resistance in skeletal muscle.


Dataset from the global phosphoproteomic mapping of early mitotic exit in human cells.

  • Samuel Rogers‎ et al.
  • Data in brief‎
  • 2015‎

The presence or absence of a phosphorylation on a substrate at any particular point in time is a functional readout of the balance in activity between the regulatory kinase and the counteracting phosphatase. Understanding how stable or short-lived a phosphorylation site is required for fully appreciating the biological consequences of the phosphorylation. Our current understanding of kinases and their substrates is well established; however, the role phosphatases play is less understood. Therefore, we utilized a phosphatase dependent model of mitotic exit to identify potential substrates that are preferentially dephosphorylated. Using this method, we identified >16,000 phosphosites on >3300 unique proteins, and quantified the temporal phosphorylation changes that occur during early mitotic exit (McCloy et al., 2015 [1]). Furthermore, we annotated the majority of these phosphorylation sites with a high confidence upstream kinase using published, motif and prediction based methods. The results from this study have been deposited into the ProteomeXchange repository with identifier PXD001559. Here we provide additional analysis of this dataset; for each of the major mitotic kinases we identified motifs that correlated strongly with phosphorylation status. These motifs could be used to predict the stability of phosphorylated residues in proteins of interest, and help infer potential functional roles for uncharacterized phosphorylations. In addition, we provide validation at the single cell level that serine residues phosphorylated by Cdk are stable during phosphatase dependent mitotic exit. In summary, this unique dataset contains information on the temporal mitotic stability of thousands of phosphorylation sites regulated by dozens of kinases, and information on the potential preference that phosphatases have at both the protein and individual phosphosite level. The compellation of this data provides an invaluable resource for the wider research community.


Metabolomics reveals mouse plasma metabolite responses to acute exercise and effects of disrupting AMPK-glycogen interactions.

  • Mehdi R Belhaj‎ et al.
  • Frontiers in molecular biosciences‎
  • 2022‎

Introduction: The AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that becomes activated by exercise and binds glycogen, an important energy store required to meet exercise-induced energy demands. Disruption of AMPK-glycogen interactions in mice reduces exercise capacity and impairs whole-body metabolism. However, the mechanisms underlying these phenotypic effects at rest and following exercise are unknown. Furthermore, the plasma metabolite responses to an acute exercise challenge in mice remain largely uncharacterized. Methods: Plasma samples were collected from wild type (WT) and AMPK double knock-in (DKI) mice with disrupted AMPK-glycogen binding at rest and following 30-min submaximal treadmill running. An untargeted metabolomics approach was utilized to determine the breadth of plasma metabolite changes occurring in response to acute exercise and the effects of disrupting AMPK-glycogen binding. Results: Relative to WT mice, DKI mice had reduced maximal running speed (p < 0.0001) concomitant with increased body mass (p < 0.01) and adiposity (p < 0.001). A total of 83 plasma metabolites were identified/annotated, with 17 metabolites significantly different (p < 0.05; FDR<0.1) in exercised (↑6; ↓11) versus rested mice, including amino acids, acylcarnitines and steroid hormones. Pantothenic acid was reduced in DKI mice versus WT. Distinct plasma metabolite profiles were observed between the rest and exercise conditions and between WT and DKI mice at rest, while metabolite profiles of both genotypes converged following exercise. These differences in metabolite profiles were primarily explained by exercise-associated increases in acylcarnitines and steroid hormones as well as decreases in amino acids and derivatives following exercise. DKI plasma showed greater decreases in amino acids following exercise versus WT. Conclusion: This is the first study to map mouse plasma metabolomic changes following a bout of acute exercise in WT mice and the effects of disrupting AMPK-glycogen interactions in DKI mice. Untargeted metabolomics revealed alterations in metabolite profiles between rested and exercised mice in both genotypes, and between genotypes at rest. This study has uncovered known and previously unreported plasma metabolite responses to acute exercise in WT mice, as well as greater decreases in amino acids following exercise in DKI plasma. Reduced pantothenic acid levels may contribute to differences in fuel utilization in DKI mice.


Mice with Whole-Body Disruption of AMPK-Glycogen Binding Have Increased Adiposity, Reduced Fat Oxidation and Altered Tissue Glycogen Dynamics.

  • Natalie R Janzen‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The AMP-activated protein kinase (AMPK), a central regulator of cellular energy balance and metabolism, binds glycogen via its β subunit. However, the physiological effects of disrupting AMPK-glycogen interactions remain incompletely understood. To chronically disrupt AMPK-glycogen binding, AMPK β double knock-in (DKI) mice were generated with mutations in residues critical for glycogen binding in both the β1 (W100A) and β2 (W98A) subunit isoforms. We examined the effects of this DKI mutation on whole-body substrate utilization, glucose homeostasis, and tissue glycogen dynamics. Body composition, metabolic caging, glucose and insulin tolerance, serum hormone and lipid profiles, and tissue glycogen and protein content were analyzed in chow-fed male DKI and age-matched wild-type (WT) mice. DKI mice displayed increased whole-body fat mass and glucose intolerance associated with reduced fat oxidation relative to WT. DKI mice had reduced liver glycogen content in the fed state concomitant with increased utilization and no repletion of skeletal muscle glycogen in response to fasting and refeeding, respectively, despite similar glycogen-associated protein content relative to WT. DKI liver and skeletal muscle displayed reductions in AMPK protein content versus WT. These findings identify phenotypic effects of the AMPK DKI mutation on whole-body metabolism and tissue AMPK content and glycogen dynamics.


Disrupting AMPK-Glycogen Binding in Mice Increases Carbohydrate Utilization and Reduces Exercise Capacity.

  • Natalie R Janzen‎ et al.
  • Frontiers in physiology‎
  • 2022‎

The AMP-activated protein kinase (AMPK) is a central regulator of cellular energy balance and metabolism and binds glycogen, the primary storage form of glucose in liver and skeletal muscle. The effects of disrupting whole-body AMPK-glycogen interactions on exercise capacity and substrate utilization during exercise in vivo remain unknown. We used male whole-body AMPK double knock-in (DKI) mice with chronic disruption of AMPK-glycogen binding to determine the effects of DKI mutation on exercise capacity, patterns of whole-body substrate utilization, and tissue metabolism during exercise. Maximal treadmill running speed and whole-body energy utilization during submaximal running were determined in wild type (WT) and DKI mice. Liver and skeletal muscle glycogen and skeletal muscle AMPK α and β2 subunit content and signaling were assessed in rested and maximally exercised WT and DKI mice. Despite a reduced maximal running speed and exercise time, DKI mice utilized similar absolute amounts of liver and skeletal muscle glycogen compared to WT. DKI skeletal muscle displayed reduced AMPK α and β2 content versus WT, but intact relative AMPK phosphorylation and downstream signaling at rest and following exercise. During submaximal running, DKI mice displayed an increased respiratory exchange ratio, indicative of greater reliance on carbohydrate-based fuels. In summary, whole-body disruption of AMPK-glycogen interactions reduces maximal running capacity and skeletal muscle AMPK α and β2 content and is associated with increased skeletal muscle glycogen utilization. These findings highlight potential unappreciated roles for AMPK in regulating tissue glycogen dynamics and expand AMPK's known roles in exercise and metabolism.


PhosR enables processing and functional analysis of phosphoproteomic data.

  • Hani Jieun Kim‎ et al.
  • Cell reports‎
  • 2021‎

Mass spectrometry (MS)-based phosphoproteomics has revolutionized our ability to profile phosphorylation-based signaling in cells and tissues on a global scale. To infer the action of kinases and signaling pathways in phosphoproteomic experiments, we present PhosR, a set of tools and methodologies implemented in a suite of R packages facilitating comprehensive analysis of phosphoproteomic data. By applying PhosR to both published and new phosphoproteomic datasets, we demonstrate capabilities in data imputation and normalization by using a set of "stably phosphorylated sites" and in functional analysis for inferring active kinases and signaling pathways. In particular, we introduce a "signalome" construction method for identifying a collection of signaling modules to summarize and visualize the interaction of kinases and their collective actions on signal transduction. Together, our data and findings demonstrate the utility of PhosR in processing and generating biological knowledge from MS-based phosphoproteomic data.


Chromium enhances insulin responsiveness via AMPK.

  • Nolan J Hoffman‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2014‎

Trivalent chromium (Cr(3+)) is known to improve glucose homeostasis. Cr(3+) has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5' AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr(3+) improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr(3+) protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr(3+) on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr(3+) in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr(3+), via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation.


Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates.

  • Nolan J Hoffman‎ et al.
  • Cell metabolism‎
  • 2015‎

Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high-intensity exercise bout, revealing 1,004 unique exercise-regulated phosphosites on 562 proteins. These included substrates of known exercise-regulated kinases (AMPK, PKA, CaMK, MAPK, mTOR), yet the majority of kinases and substrate phosphosites have not previously been implicated in exercise signaling. Given the importance of AMPK in exercise-regulated metabolism, we performed a targeted in vitro AMPK screen and employed machine learning to predict exercise-regulated AMPK substrates. We validated eight predicted AMPK substrates, including AKAP1, using targeted phosphoproteomics. Functional characterization revealed an undescribed role for AMPK-dependent phosphorylation of AKAP1 in mitochondrial respiration. These data expose the unexplored complexity of acute exercise signaling and provide insights into the role of AMPK in mitochondrial biochemistry.


Structure-function analysis of the AMPK activator SC4 and identification of a potent pan AMPK activator.

  • Ashley J Ovens‎ et al.
  • The Biochemical journal‎
  • 2022‎

The AMP-activated protein kinase (AMPK) αβγ heterotrimer is a primary cellular energy sensor and central regulator of energy homeostasis. Activating skeletal muscle AMPK with small molecule drugs improves glucose uptake and provides an opportunity for new strategies to treat type 2 diabetes and insulin resistance, with recent genetic and pharmacological studies indicating the α2β2γ1 isoform combination as the heterotrimer complex primarily responsible. With the goal of developing α2β2-specific activators, here we perform structure/function analysis of the 2-hydroxybiphenyl group of SC4, an activator with tendency for α2-selectivity that is also capable of potently activating β2 complexes. Substitution of the LHS 2-hydroxyphenyl group with polar-substituted cyclohexene-based probes resulted in two AMPK agonists, MSG010 and MSG011, which did not display α2-selectivity when screened against a panel of AMPK complexes. By radiolabel kinase assay, MSG010 and MSG011 activated α2β2γ1 AMPK with one order of magnitude greater potency than the pan AMPK activator MK-8722. A crystal structure of MSG011 complexed to AMPK α2β1γ1 revealed a similar binding mode to SC4 and the potential importance of an interaction between the SC4 2-hydroxyl group and α2-Lys31 for directing α2-selectivity. MSG011 induced robust AMPK signalling in mouse primary hepatocytes and commonly used cell lines, and in most cases this occurred in the absence of changes in phosphorylation of the kinase activation loop residue α-Thr172, a classical marker of AMP-induced AMPK activity. These findings will guide future design of α2β2-selective AMPK activators, that we hypothesise may avoid off-target complications associated with indiscriminate activation of AMPK throughout the body.


Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance.

  • Daniel J Fazakerley‎ et al.
  • eLife‎
  • 2018‎

Insulin resistance in muscle, adipocytes and liver is a gateway to a number of metabolic diseases. Here, we show a selective deficiency in mitochondrial coenzyme Q (CoQ) in insulin-resistant adipose and muscle tissue. This defect was observed in a range of in vitro insulin resistance models and adipose tissue from insulin-resistant humans and was concomitant with lower expression of mevalonate/CoQ biosynthesis pathway proteins in most models. Pharmacologic or genetic manipulations that decreased mitochondrial CoQ triggered mitochondrial oxidants and insulin resistance while CoQ supplementation in either insulin-resistant cell models or mice restored normal insulin sensitivity. Specifically, lowering of mitochondrial CoQ caused insulin resistance in adipocytes as a result of increased superoxide/hydrogen peroxide production via complex II. These data suggest that mitochondrial CoQ is a proximal driver of mitochondrial oxidants and insulin resistance, and that mechanisms that restore mitochondrial CoQ may be effective therapeutic targets for treating insulin resistance.


Genetic loss of AMPK-glycogen binding destabilises AMPK and disrupts metabolism.

  • Nolan J Hoffman‎ et al.
  • Molecular metabolism‎
  • 2020‎

Glycogen is a major energy reserve in liver and skeletal muscle. The master metabolic regulator AMP-activated protein kinase (AMPK) associates with glycogen via its regulatory β subunit carbohydrate-binding module (CBM). However, the physiological role of AMPK-glycogen binding in energy homeostasis has not been investigated in vivo. This study aimed to determine the physiological consequences of disrupting AMPK-glycogen interactions.


PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications.

  • Rima Chaudhuri‎ et al.
  • BMC genomics‎
  • 2015‎

Most biological processes are influenced by protein post-translational modifications (PTMs). Identifying novel PTM sites in different organisms, including humans and model organisms, has expedited our understanding of key signal transduction mechanisms. However, with increasing availability of deep, quantitative datasets in diverse species, there is a growing need for tools to facilitate cross-species comparison of PTM data. This is particularly important because functionally important modification sites are more likely to be evolutionarily conserved; yet cross-species comparison of PTMs is difficult since they often lie in structurally disordered protein domains. Current tools that address this can only map known PTMs between species based on known orthologous phosphosites, and do not enable the cross-species mapping of newly identified modification sites. Here, we addressed this by developing a web-based software tool, PhosphOrtholog ( www.phosphortholog.com ) that accurately maps protein modification sites between different species. This facilitates the comparison of datasets derived from multiple species, and should be a valuable tool for the proteomics community.


mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3.

  • Maximilian Kleinert‎ et al.
  • Molecular metabolism‎
  • 2016‎

We have recently shown that acute inhibition of both mTOR complexes (mTORC1 and mTORC2) increases whole-body lipid utilization, while mTORC1 inhibition had no effect. Therefore, we tested the hypothesis that mTORC2 regulates lipid metabolism in skeletal muscle.


Omega-3 Polyunsaturated Fatty Acids Mitigate Palmitate-Induced Impairments in Skeletal Muscle Cell Viability and Differentiation.

  • Bill Tachtsis‎ et al.
  • Frontiers in physiology‎
  • 2020‎

Accumulation of excess saturated free fatty acids such as palmitate (PAL) in skeletal muscle leads to reductions in mitochondrial integrity, cell viability and differentiation. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) counteract PAL-induced lipid accumulation. EPA and DHA, as well as the n-3 PUFA docosapentaenoic acid (DPA), may therefore mitigate PAL-induced lipotoxicity to promote skeletal muscle cell survival and differentiation. C2C12 myoblasts were treated with 50 μM EPA, DPA, or DHA in the absence or presence of 500 μM PAL for 16 h either prior to myoblast analysis or induction of differentiation. Myoblast viability and markers of apoptosis, endoplasmic reticulum (ER) stress and myotube differentiation capacity were investigated using fluorescence microscopy and immunoblotting. High-resolution respirometry was used to assess mitochondrial function and membrane integrity. PAL induced cell death via apoptosis and increased protein content of ER stress markers BiP and CHOP. EPA, DPA, and DHA co-treatment maintained cell viability, prevented PAL-induced apoptosis and attenuated PAL-induced increases in BiP, whereas only DPA prevented increases in CHOP. PAL subsequently reduced protein content of the differentiation marker myogenin and inhibited myotube formation, and all n-3 PUFAs promoted myotube formation in the presence of PAL. Furthermore, DPA prevented PAL-induced release of cytochrome c and maintained mitochondrial integrity. These findings demonstrate the n-3 PUFAs EPA, DPA and DHA elicit similar protective effects against PAL-induced impairments in muscle cell viability and differentiation. Mechanistically, the protective effects of DPA against PAL lipotoxicity are attributable in part to its ability to maintain mitochondrial respiratory capacity via mitigating PAL-induced loss of mitochondrial membrane integrity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: