Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

The genotypic and phenotypic spectrum of PIGA deficiency.

  • Maja Tarailo-Graovac‎ et al.
  • Orphanet journal of rare diseases‎
  • 2015‎

Phosphatidylinositol glycan biosynthesis class A protein (PIGA) is one of the enzymes involved in the biosynthesis of glycosylphosphatidylinositol (GPI) anchor proteins, which function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Until recently, only somatic PIGA mutations had been reported in patients with paroxysmal nocturnal hemoglobinuria (PNH), while germline mutations had not been observed, and were suspected to result in lethality. However, in just two years, whole exome sequencing (WES) analyses have identified germline PIGA mutations in male patients with XLIDD (X-linked intellectual developmental disorder) with a wide spectrum of clinical presentations.


Optic atrophy, cataracts, lipodystrophy/lipoatrophy, and peripheral neuropathy caused by a de novo OPA3 mutation.

  • Stephanie C Bourne‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2017‎

We describe a woman who presented with cataracts, optic atrophy, lipodystrophy/lipoatrophy, and peripheral neuropathy. Exome sequencing identified a c.235C > G p.(Leu79Val) variant in the optic atrophy 3 (OPA3) gene that was confirmed to be de novo. This report expands the severity of the phenotypic spectrum of autosomal dominant OPA3 mutations.


JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles.

  • Anthony Mathelier‎ et al.
  • Nucleic acids research‎
  • 2014‎

JASPAR (http://jaspar.genereg.net) is the largest open-access database of matrix-based nucleotide profiles describing the binding preference of transcription factors from multiple species. The fifth major release greatly expands the heart of JASPAR-the JASPAR CORE subcollection, which contains curated, non-redundant profiles-with 135 new curated profiles (74 in vertebrates, 8 in Drosophila melanogaster, 10 in Caenorhabditis elegans and 43 in Arabidopsis thaliana; a 30% increase in total) and 43 older updated profiles (36 in vertebrates, 3 in D. melanogaster and 4 in A. thaliana; a 9% update in total). The new and updated profiles are mainly derived from published chromatin immunoprecipitation-seq experimental datasets. In addition, the web interface has been enhanced with advanced capabilities in browsing, searching and subsetting. Finally, the new JASPAR release is accompanied by a new BioPython package, a new R tool package and a new R/Bioconductor data package to facilitate access for both manual and automated methods.


Inhibition of nuclear factor-erythroid 2-related factor (Nrf2) by caveolin-1 promotes stress-induced premature senescence.

  • Daniela Volonte‎ et al.
  • Molecular biology of the cell‎
  • 2013‎

Reactive oxygen species (ROS) can induce premature cellular senescence, which is believed to contribute to aging and age-related diseases. The nuclear erythroid 2 p45-related factor-2 (Nrf2) is a transcription factor that mediates cytoprotective responses against stress. We demonstrate that caveolin-1 is a direct binding partner of Nrf2, as shown by the binding of the scaffolding domain of caveolin-1 (amino acids 82-101) to the caveolin-binding domain of Nrf2 (amino acids 281-289). Biochemical studies show that Nrf2 is concentrated into caveolar membranes in human and mouse fibroblasts, where it colocalizes with caveolin-1, under resting conditions. After oxidative stress, caveolin-1 limits the movement of Nrf2 from caveolar membranes to the nucleus. In contrast, Nrf2 is constitutively localized to the nucleus before and after oxidative stress in caveolin-1-null mouse embryonic fibroblasts (MEFs), which do not express caveolin-1. Functional studies demonstrate that caveolin-1 acts as an endogenous inhibitor of Nrf2, as shown by the enhanced up-regulation of NQO1, an Nrf2 target gene, in caveolin-1-null MEFs and the activation or inhibition of a luciferase construct carrying an antioxidant responsive element (ARE) after down-regulation of caveolin-1 by small interfering RNA or overexpression of caveolin-1, respectively. Expression of a mutant form of Nrf2 that cannot bind to caveolin-1 (Φ→A-Nrf2) hyperactivates ARE and inhibits oxidative stress-induced activation of the p53/p21(Waf1/Cip1) pathway and induction of premature senescence in fibroblasts. Finally, we show that overexpression of caveolin-1 in colon cancer cells inhibits oxidant-induced activation of Nrf2-dependent signaling, promotes premature senescence, and inhibits their transformed phenotype. Thus, by inhibiting Nrf2-mediated signaling, caveolin-1 links free radicals to the activation of the p53/senescence pathway.


The dynamin-related GTPase Opa1 is required for glucose-stimulated ATP production in pancreatic beta cells.

  • Zhongyan Zhang‎ et al.
  • Molecular biology of the cell‎
  • 2011‎

Previous studies using in vitro cell culture systems have shown the role of the dynamin-related GTPase Opa1 in apoptosis prevention and mitochondrial DNA (mtDNA) maintenance. However, it remains to be tested whether these functions of Opa1 are physiologically important in vivo in mammals. Here, using the Cre-loxP system, we deleted mouse Opa1 in pancreatic beta cells, in which glucose-stimulated ATP production in mitochondria plays a key role in insulin secretion. Beta cells lacking Opa1 maintained normal copy numbers of mtDNA; however, the amount and activity of electron transport chain complex IV were significantly decreased, leading to impaired glucose-stimulated ATP production and insulin secretion. In addition, in Opa1-null beta cells, cell proliferation was impaired, whereas apoptosis was not promoted. Consequently, mice lacking Opa1 in beta cells develop hyperglycemia. The data suggest that the function of Opa1 in the maintenance of the electron transport chain is physiologically relevant in beta cells.


Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis.

  • Deepti Malhotra‎ et al.
  • Nucleic acids research‎
  • 2010‎

The Nrf2 (nuclear factor E2 p45-related factor 2) transcription factor responds to diverse oxidative and electrophilic environmental stresses by circumventing repression by Keap1, translocating to the nucleus, and activating cytoprotective genes. Nrf2 responses provide protection against chemical carcinogenesis, chronic inflammation, neurodegeneration, emphysema, asthma and sepsis in murine models. Nrf2 regulates the expression of a plethora of genes that detoxify oxidants and electrophiles and repair or remove damaged macromolecules, such as through proteasomal processing. However, many direct targets of Nrf2 remain undefined. Here, mouse embryonic fibroblasts (MEF) with either constitutive nuclear accumulation (Keap1(-/-)) or depletion (Nrf2(-/-)) of Nrf2 were utilized to perform chromatin-immunoprecipitation with parallel sequencing (ChIP-Seq) and global transcription profiling. This unique Nrf2 ChIP-Seq dataset is highly enriched for Nrf2-binding motifs. Integrating ChIP-Seq and microarray analyses, we identified 645 basal and 654 inducible direct targets of Nrf2, with 244 genes at the intersection. Modulated pathways in stress response and cell proliferation distinguish the inducible and basal programs. Results were confirmed in an in vivo stress model of cigarette smoke-exposed mice. This study reveals global circuitry of the Nrf2 stress response emphasizing Nrf2 as a central node in cell survival response.


FLAGS, frequently mutated genes in public exomes.

  • Casper Shyr‎ et al.
  • BMC medical genomics‎
  • 2014‎

Dramatic improvements in DNA-sequencing technologies and computational analyses have led to wide use of whole exome sequencing (WES) to identify the genetic basis of Mendelian disorders. More than 180 novel rare-disease-causing genes with Mendelian inheritance patterns have been discovered through sequencing the exomes of just a few unrelated individuals or family members. As rare/novel genetic variants continue to be uncovered, there is a major challenge in distinguishing true pathogenic variants from rare benign mutations.


Defects in fatty acid amide hydrolase 2 in a male with neurologic and psychiatric symptoms.

  • Sandra Sirrs‎ et al.
  • Orphanet journal of rare diseases‎
  • 2015‎

Fatty acid amide hydrolase 2 (FAAH2) is a hydrolase that mediates the degradation of endocannabinoids in man. Alterations in the endocannabinoid system are associated with a wide variety of neurologic and psychiatric conditions, but the phenotype and biochemical characterization of patients with genetic defects of FAAH2 activity have not previously been described. We report a male with autistic features with an onset before the age of 2 years who subsequently developed additional features including anxiety, pseudoseizures, ataxia, supranuclear gaze palsy, and isolated learning disabilities but was otherwise cognitively intact as an adult.


JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.

  • Anthony Mathelier‎ et al.
  • Nucleic acids research‎
  • 2016‎

JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release.


Mitochondrial division ensures the survival of postmitotic neurons by suppressing oxidative damage.

  • Yusuke Kageyama‎ et al.
  • The Journal of cell biology‎
  • 2012‎

Mitochondria divide and fuse continuously, and the balance between these two processes regulates mitochondrial shape. Alterations in mitochondrial dynamics are associated with neurodegenerative diseases. Here we investigate the physiological and cellular functions of mitochondrial division in postmitotic neurons using in vivo and in vitro gene knockout for the mitochondrial division protein Drp1. When mouse Drp1 was deleted in postmitotic Purkinje cells in the cerebellum, mitochondrial tubules elongated due to excess fusion, became large spheres due to oxidative damage, accumulated ubiquitin and mitophagy markers, and lost respiratory function, leading to neurodegeneration. Ubiquitination of mitochondria was independent of the E3 ubiquitin ligase parkin in Purkinje cells lacking Drp1. Treatment with antioxidants rescued mitochondrial swelling and cell death in Drp1KO Purkinje cells. Moreover, hydrogen peroxide converted elongated tubules into large spheres in Drp1KO fibroblasts. Our findings suggest that mitochondrial division serves as a quality control mechanism to suppress oxidative damage and thus promote neuronal survival.


Constitutive Activation of Nrf2 in Mice Expands Enterogenesis in Small Intestine Through Negative Regulation of Math1.

  • Yoko Yagishita‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2021‎

Notch signaling coordinates cell differentiation processes in the intestinal epithelium. The transcription factor Nrf2 orchestrates defense mechanisms by regulating cellular redox homeostasis, which, as shown previously in murine liver, can be amplified through signaling crosstalk with the Notch pathway. However, interplay between these 2 signaling pathways in the gut is unknown.


Linkage analysis identifies an isolated strabismus locus at 14q12 overlapping with FOXG1 syndrome region.

  • Xin Cynthia Ye‎ et al.
  • Journal of medical genetics‎
  • 2022‎

Strabismus is a common condition, affecting 1%-4% of individuals. Isolated strabismus has been studied in families with Mendelian inheritance patterns. Despite the identification of multiple loci via linkage analyses, no specific genes have been identified from these studies. The current study is based on a seven-generation family with isolated strabismus inherited in an autosomal dominant manner. A total of 13 individuals from a common ancestor have been included for linkage analysis. Among these, nine are affected and four are unaffected. A single linkage signal has been identified at an 8.5 Mb region of chromosome 14q12 with a multipoint LOD (logarithm of the odds) score of 4.69. Disruption of this locus is known to cause FOXG1 syndrome (or congenital Rett syndrome; OMIM #613454 and *164874), in which 84% of affected individuals present with strabismus. With the incorporation of next-generation sequencing and in-depth bioinformatic analyses, a 4 bp non-coding deletion was prioritised as the top candidate for the observed strabismus phenotype. The deletion is predicted to disrupt regulation of FOXG1, which encodes a transcription factor of the Forkhead family. Suggestive of an autoregulation effect, the disrupted sequence matches the consensus FOXG1 and Forkhead family transcription factor binding site and has been observed in previous ChIP-seq studies to be bound by Foxg1 in early mouse brain development. Future study of this specific deletion may shed light on the regulation of FOXG1 expression and may enhance our understanding of the mechanisms contributing to strabismus and FOXG1 syndrome.


Cytosolic phosphoenolpyruvate carboxykinase deficiency presenting with acute liver failure following gastroenteritis.

  • Saikat Santra‎ et al.
  • Molecular genetics and metabolism‎
  • 2016‎

We report a patient from a consanguineous family who presented with transient acute liver failure and biochemical patterns suggestive of disturbed urea cycle and mitochondrial function, for whom conventional genetic and metabolic investigations for acute liver failure failed to yield a diagnosis. Whole exome sequencing revealed a homozygous 12-bp deletion in PCK1 (MIM 614168) encoding cytosolic phosphoenolpyruvate carboxykinase (PEPCK); enzymatic studies subsequently confirmed its pathogenic nature. We propose that PEPCK deficiency should be considered in the young child with unexplained liver failure, especially where there are marked, accumulations of TCA cycle metabolites on urine organic acid analysis and/or an amino acid profile with hyperammonaemia suggestive of a proximal urea cycle defect during the acute episode. If suspected, intravenous administration of dextrose should be initiated. Long-term management comprising avoidance of fasting with the provision of a glucose polymer emergency regimen for illness management may be sufficient to prevent future episodes of liver failure. This case report provides further insights into the (patho-)physiology of energy metabolism, confirming the power of genomic analysis of unexplained biochemical phenotypes.


Single point mutation in Rabenosyn-5 in a female with intractable seizures and evidence of defective endocytotic trafficking.

  • Sylvia Stockler‎ et al.
  • Orphanet journal of rare diseases‎
  • 2014‎

We report a 6.5 year-old female with a homozygous missense mutation in ZFYVE20, encoding Rabenosyn-5 (Rbsn-5), a highly conserved multi-domain protein implicated in receptor-mediated endocytosis. The clinical presentation includes intractable seizures, developmental delay, microcephaly, dysostosis, osteopenia, craniofacial dysmorphism, macrocytosis and megaloblastoid erythropoiesis. Biochemical findings include transient cobalamin deficiency, severe hypertriglyceridemia upon ketogenic diet, microalbuminuria and partial cathepsin D deficiency.


Secondary neurotransmitter deficiencies in epilepsy caused by voltage-gated sodium channelopathies: A potential treatment target?

  • Gabriella A Horvath‎ et al.
  • Molecular genetics and metabolism‎
  • 2016‎

We describe neurotransmitter abnormalities in two patients with drug-resistant epilepsy resulting from deleterious de novo mutations in sodium channel genes. Whole exome sequencing identified a de novo SCN2A splice-site mutation (c.2379+1G>A, p.Glu717Gly.fs*30) resulting in deletion of exon 14, in a 10-year old male with early onset global developmental delay, intermittent ataxia, autism, hypotonia, epileptic encephalopathy and cerebral/cerebellar atrophy. In the cerebrospinal fluid both homovanillic acid and 5-hydroxyindoleacetic acid were significantly decreased; extensive biochemical and genetic investigations ruled out primary neurotransmitter deficiencies and other known inborn errors of metabolism. In an 8-year old female with an early onset intractable epileptic encephalopathy, developmental regression, and progressive cerebellar atrophy, a previously unreported de novo missense mutation was identified in SCN8A (c.5615G>A; p.Arg1872Gln), affecting a highly conserved residue located in the C-terminal of the Nav1.6 protein. Aside from decreased homovanillic acid and 5-hydroxyindoleacetic acid, 5-methyltetrahydrofolate was also found to be low. We hypothesize that these channelopathies cause abnormal synaptic mono-amine metabolite secretion/uptake via impaired vesicular release and imbalance in electrochemical ion gradients, which in turn aggravate the seizures. Treatment with oral 5-hydroxytryptophan, l-Dopa/Carbidopa, and a dopa agonist resulted in mild improvement of seizure control in the male case, most likely via dopamine and serotonin receptor activated signal transduction and modulation of glutamatergic, GABA-ergic and glycinergic neurotransmission. Neurotransmitter analysis in other sodium channelopathy patients will help validate our findings, potentially yielding novel treatment opportunities.


The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice.

  • Junko Wakabayashi‎ et al.
  • The Journal of cell biology‎
  • 2009‎

The dynamin-related guanosine triphosphatase Drp1 mediates the division of mitochondria and peroxisomes. To understand the in vivo function of Drp1, complete and tissue-specific mouse knockouts of Drp1 were generated. Drp1-null mice die by embryonic day 11.5. This embryonic lethality is not likely caused by gross energy deprivation, as Drp1-null cells showed normal intracellular adenosine triphosphate levels. In support of the role of Drp1 in organelle division, mitochondria formed extensive networks, and peroxisomes were elongated in Drp1-null embryonic fibroblasts. Brain-specific Drp1 ablation caused developmental defects of the cerebellum in which Purkinje cells contained few giant mitochondria instead of the many short tubular mitochondria observed in control cells. In addition, Drp1-null embryos failed to undergo developmentally regulated apoptosis during neural tube formation in vivo. However, Drp1-null embryonic fibroblasts have normal responses to apoptotic stimuli in vitro, suggesting that the apoptotic function of Drp1 depends on physiological cues. These findings clearly demonstrate the physiological importance of Drp1-mediated organelle division in mice.


A novel recurrent mutation in ATP1A3 causes CAPOS syndrome.

  • Michelle K Demos‎ et al.
  • Orphanet journal of rare diseases‎
  • 2014‎

We undertook genetic analysis of three affected families to identify the cause of dominantly-inherited CAPOS (cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss) syndrome.


Correction to: FLAGS, frequently mutated genes in public exomes.

  • Casper Shyr‎ et al.
  • BMC medical genomics‎
  • 2017‎

Unfortunately, the original article [1] contained an error. The additional files were included incorrectly. The correct additional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14 are published in this correction.


Forced Hepatic Expression of NRF2 or NQO1 Impedes Hepatocyte Lipid Accumulation in a Lipodystrophy Mouse Model.

  • Nobunao Wakabayashi‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Lipodystrophy is a disorder featuring loss of normal adipose tissue depots due to impaired production of normal adipocytes. It leads to a gain of fat deposition in ectopic tissues such as liver and skeletal muscle that results in steatosis, dyslipidemia, and insulin resistance. Previously, we established a Rosa NIC/NIC::AdiCre lipodystrophy model mouse. The lipodystrophic phenotype that included hepatomegaly accompanied with hepatic damage due to higher lipid accumulation was attenuated substantially by amplified systemic NRF2 signaling in mice with hypomorphic expression of Keap1; whole-body Nrf2 deletion abrogated this protection. To determine whether hepatic-specific NRF2 signaling would be sufficient for protection against hepatomegaly and fatty liver development, direct, powerful, transient expression of Nrf2 or its target gene Nqo1 was achieved by administration through hydrodynamic tail vein injection of pCAG expression vectors of dominant-active Nrf2 and Nqo1 in Rosa NIC/NIC::AdiCre mice fed a 9% fat diet. Both vectors enabled protection from hepatic damage, with the pCAG-Nqo1 vector being the more effective as seen with a ~50% decrease in hepatic triglyceride levels. Therefore, activating NRF2 signaling or direct elevation of NQO1 in the liver provides new possibilities to partially reduce steatosis that accompanies lipodystrophy.


Dynamic software design for clinical exome and genome analyses: insights from bioinformaticians, clinical geneticists, and genetic counselors.

  • Casper Shyr‎ et al.
  • Journal of the American Medical Informatics Association : JAMIA‎
  • 2016‎

The transition of whole-exome and whole-genome sequencing (WES/WGS) from the research setting to routine clinical practice remains challenging.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: