2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

DYRK1A overexpression enhances STAT activity and astrogliogenesis in a Down syndrome mouse model.

  • Nobuhiro Kurabayashi‎ et al.
  • EMBO reports‎
  • 2015‎

Down syndrome (DS) arises from triplication of genes on human chromosome 21 and is associated with anomalies in brain development such as reduced production of neurons and increased generation of astrocytes. Here, we show that differentiation of cortical progenitor cells into astrocytes is promoted by DYRK1A, a Ser/Thr kinase encoded on human chromosome 21. In the Ts1Cje mouse model of DS, increased dosage of DYRK1A augments the propensity of progenitors to differentiate into astrocytes. This tendency is associated with enhanced astrogliogenesis in the developing neocortex. We also find that overexpression of DYRK1A upregulates the activity of the astrogliogenic transcription factor STAT in wild-type progenitors. Ts1Cje progenitors exhibit elevated STAT activity, and depletion of DYRK1A in these cells reverses the deregulation of STAT. In sum, our findings indicate that potentiation of the DYRK1A-STAT pathway in progenitors contributes to aberrant astrogliogenesis in DS.


Increased dosage of DYRK1A and DSCR1 delays neuronal differentiation in neocortical progenitor cells.

  • Nobuhiro Kurabayashi‎ et al.
  • Genes & development‎
  • 2013‎

Down's syndrome (DS), a major genetic cause of mental retardation, arises from triplication of genes on human chromosome 21. Here we show that DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) and DSCR1 (DS critical region 1), two genes lying within human chromosome 21 and encoding for a serine/threonine kinase and calcineurin regulator, respectively, are expressed in neural progenitors in the mouse developing neocortex. Increasing the dosage of both proteins in neural progenitors leads to a delay in neuronal differentiation, resulting ultimately in alteration of their laminar fate. This defect is mediated by the cooperative actions of DYRK1A and DSCR1 in suppressing the activity of the transcription factor NFATc. In Ts1Cje mice, a DS mouse model, dysregulation of NFATc in conjunction with increased levels of DYRK1A and DSCR1 was observed. Furthermore, counteracting the dysregulated pathway ameliorates the delayed neuronal differentiation observed in Ts1Cje mice. In sum, our findings suggest that dosage of DYRK1A and DSCR1 is critical for proper neurogenesis through NFATc and provide a potential mechanism to explain the neurodevelopmental defects in DS.


In Vivo Single-Cell Genotyping of Mouse Cortical Neurons Transfected with CRISPR/Cas9.

  • André Steinecke‎ et al.
  • Cell reports‎
  • 2019‎

CRISPR/Cas-based technologies have revolutionized genetic approaches to addressing a wide range of neurobiological questions. The ability of CRISPR/Cas to introduce mutations into target genes allows us to perform in vivo loss-of-function experiments without generating genetically engineered mice. However, the lack of a reliable method to determine genotypes of individual CRISPR/Cas-transfected cells has made it impossible to unambiguously identify the genetic cause of their phenotypes in vivo. Here, we report a strategy for single-cell genotyping in CRISPR/Cas-transfected neurons that were phenotypically characterized in vivo. We show that re-sectioning of cortical slices and subsequent laser microdissection allow us to isolate individual CRISPR/Cas-transfected neurons. Sequencing of PCR products containing a CRISPR/Cas-targeted genomic region in single reference neurons provided genotypes that completely correspond with those deduced from their target protein expression and phenotypes. Thus, our study establishes a powerful strategy to determine the causality between genotypes and phenotypes in CRISPR/Cas-transfected neurons.


The G protein-coupled receptor GPR157 regulates neuronal differentiation of radial glial progenitors through the Gq-IP3 pathway.

  • Yutaka Takeo‎ et al.
  • Scientific reports‎
  • 2016‎

The ability of radial glial progenitors (RGPs) to generate cortical neurons is determined by local extracellular factors and signaling pathways intrinsic to RGPs. Here we find that GPR157, an orphan G protein-coupled receptor, localizes to RGPs' primary cilia exposed to the cerebrospinal fluid (CSF). GPR157 couples with Gq-class of the heterotrimeric G-proteins and signals through IP3-mediated Ca(2+) cascade. Activation of GPR157-Gq signaling enhances neuronal differentiation of RGPs whereas interfering with GPR157-Gq-IP3 cascade in RGPs suppresses neurogenesis. We also detect the presence of putative ligand(s) for GPR157 in the CSF, and demonstrate the increased ability of the CSF to activate GPR157 at neurogenic phase. Thus, GPR157-Gq signaling at the primary cilia of RGPs is activated by the CSF and contributes to neurogenesis.


Neocortical neuronal production and maturation defects in the TcMAC21 mouse model of Down syndrome.

  • Nobuhiro Kurabayashi‎ et al.
  • iScience‎
  • 2023‎

Down syndrome (DS) results from trisomy of human chromosome 21 (HSA21), and DS research has been conducted by the use of mouse models. We previously generated a humanized mouse model of DS, TcMAC21, which carries the long arm of HSA21. These mice exhibit learning and memory deficits, and may reproduce neurodevelopmental alterations observed in humans with DS. Here, we performed histologic studies of the TcMAC21 forebrain from embryonic to adult stages. The TcMAC21 neocortex showed reduced proliferation of neural progenitors and delayed neurogenesis. These abnormalities were associated with a smaller number of projection neurons and interneurons. Further, (phospho-)proteomic analysis of adult TcMAC21 cortex revealed alterations in the phosphorylation levels of a series of synaptic proteins. The TcMAC21 mouse model shows similar brain development abnormalities as DS, and will be a valuable model to investigate prenatal and postnatal causes of intellectual disability in humans with DS.


Increased anxiety in offspring reared by circadian Clock mutant mice.

  • Hiroko Koizumi‎ et al.
  • PloS one‎
  • 2013‎

The maternal care that offspring receive from their mothers early in life influences the offspring's development of emotional behavior in adulthood. Here we found that offspring reared by circadian clock-impaired mice show elevated anxiety-related behavior. Clock mutant mice harboring a mutation in Clock, a key component of the molecular circadian clock, display altered daily patterns of nursing behavior that is fragmented during the light period, instead of long bouts of nursing behavior in wild-type mice. Adult wild-type offspring fostered by Clock mutant mice exhibit increased anxiety-related behavior. This is coupled with reduced levels of brain serotonin at postnatal day 14, whose homeostasis during the early postnatal period is critical for normal emotional behavior in adulthood. Together, disruption of the circadian clock in mothers has an adverse impact on establishing normal anxiety levels in offspring, which may increase their risk of developing anxiety disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: