Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

SCF-KIT signaling induces endothelin-3 synthesis and secretion: Thereby activates and regulates endothelin-B-receptor for generating temporally- and spatially-precise nitric oxide to modulate SCF- and or KIT-expressing cell functions.

  • Lei L Chen‎ et al.
  • PloS one‎
  • 2017‎

We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation.


Contrast Sensitivity Testing in Retinal Vein Occlusion Using a Novel Stimulus.

  • Shubhendu Mishra‎ et al.
  • Translational vision science & technology‎
  • 2020‎

This study evaluated a novel tool known as the motion diamond stimulus (MDS), which utilizes contrast-generated illusory motion in dynamic test regions to determine contrast sensitivity (CS).


Thioredoxin Reductase 1 Modulates Pigmentation and Photobiology of Murine Melanocytes in vivo.

  • Evan L Carpenter‎ et al.
  • The Journal of investigative dermatology‎
  • 2022‎

Pigment-producing melanocytes overcome frequent oxidative stress in their physiological role of protecting the skin against the deleterious effects of solar UV irradiation. This is accomplished by the activity of several endogenous antioxidant systems, including the thioredoxin antioxidant system, in which thioredoxin reductase 1 (TR1) plays an important part. To determine whether TR1 contributes to the redox regulation of melanocyte homeostasis, we have generated a selective melanocytic Txnrd1-knockout mouse model (Txnrd1mel‒/‒), which exhibits a depigmentation phenotype consisting of variable amelanotic ventral spotting and reduced pigmentation on the extremities (tail tip, ears, and paws). The antioxidant role of TR1 was further probed in the presence of acute neonatal UVB irradiation, which stimulates melanocyte activation and introduces a spike in oxidative stress in the skin microenvironment. Interestingly, we observed a significant reduction in overall melanocyte count and proliferation in the absence of TR1. Furthermore, melanocytes exhibited an elevated level of UV-induced DNA damage in the form of 8-oxo-2'-deoxyguanosine after acute UVB treatment. We also saw an engagement of compensatory antioxidant mechanisms through increased nuclear localization of transcription factor NRF2. Altogether, these data indicate that melanocytic TR1 positively regulates melanocyte homeostasis and pigmentation during development and protects against UVB-induced DNA damage and oxidative stress.


Lack of GNAQ and GNA11 Germ-Line Mutations in Familial Melanoma Pedigrees with Uveal Melanoma or Blue Nevi.

  • Jason E Hawkes‎ et al.
  • Frontiers in oncology‎
  • 2013‎

Approximately 10% of melanoma cases are familial, but only 25-40% of familial melanoma cases can be attributed to germ-line mutations in the CDKN2A - the most significant high-risk melanoma susceptibility locus identified to date. The pathogenic mutation(s) in most of the remaining familial melanoma pedigrees have not yet been identified. The most common mutations in nevi and sporadic melanoma are found in BRAF and NRAS, both of which result in constitutive activation of the MAPK pathway. However, these mutations are not found in uveal melanomas or the intradermal melanocytic proliferations known as blue nevi. Rather, multiple studies report a strong association between these lesions and somatic mutations in Guanine nucleotide-binding protein G(q) subunit alpha (GNAQ), Guanine nucleotide-binding protein G(q) subunit alpha-11 (GNA11), and BRCA1-associated protein-1 (BAP1). Recently, germ-line mutations in BAP1, the gene encoding a tumor suppressing deubiquitinating enzyme, have been associated with predisposition to a variety of cancers including uveal melanoma, but no studies have examined the association of germ-line mutations in GNAQ and GNA11 with uveal melanoma and blue nevi. We have now done so by sequencing exon 5 of both of these genes in 13 unique familial melanoma pedigrees, members of which have had either uveal or cutaneous melanoma and/or blue nevi. Germ-line DNA from a total of 22 individuals was used for sequencing; however no deleterious mutations were detected. Nevertheless, such candidate gene studies and the discovery of novel germ-line mutations associated with an increased MM susceptibility can lead to a better understanding of the pathways involved in melanocyte transformation, formulation of risk assessment, and the development of specific drug therapies.


T cell egress via lymphatic vessels is tuned by antigen encounter and limits tumor control.

  • Maria M Steele‎ et al.
  • Nature immunology‎
  • 2023‎

Antigen-specific CD8+ T cell accumulation in tumors is a prerequisite for effective immunotherapy, and yet the mechanisms of lymphocyte transit are not well defined. Here we show that tumor-associated lymphatic vessels control T cell exit from tumors via the chemokine CXCL12, and intratumoral antigen encounter tunes CXCR4 expression by effector CD8+ T cells. Only high-affinity antigen downregulates CXCR4 and upregulates the CXCL12 decoy receptor, ACKR3, thereby reducing CXCL12 sensitivity and promoting T cell retention. A diverse repertoire of functional tumor-specific CD8+ T cells, therefore, exit the tumor, which limits the pool of CD8+ T cells available to exert tumor control. CXCR4 inhibition or loss of lymphatic-specific CXCL12 boosts T cell retention and enhances tumor control. These data indicate that strategies to limit T cell egress might be an approach to boost the quantity and quality of intratumoral T cells and thereby response to immunotherapy.


Author Correction: T cell egress via lymphatic vessels is tuned by antigen encounter and limits tumor control.

  • Maria M Steele‎ et al.
  • Nature immunology‎
  • 2023‎

No abstract available


Quantitative multiplex immunohistochemistry reveals inter-patient lymphovascular and immune heterogeneity in primary cutaneous melanoma.

  • Julia Femel‎ et al.
  • Frontiers in immunology‎
  • 2024‎

Quantitative, multiplexed imaging is revealing complex spatial relationships between phenotypically diverse tumor infiltrating leukocyte populations and their prognostic implications. The underlying mechanisms and tissue structures that determine leukocyte distribution within and around tumor nests, however, remain poorly understood. While presumed players in metastatic dissemination, new preclinical data demonstrates that blood and lymphatic vessels (lymphovasculature) also dictate leukocyte trafficking within tumor microenvironments and thereby impact anti-tumor immunity. Here we interrogate these relationships in primary human cutaneous melanoma.


The Mole Mapper Study, mobile phone skin imaging and melanoma risk data collected using ResearchKit.

  • Dan E Webster‎ et al.
  • Scientific data‎
  • 2017‎

Sensor-embedded phones are an emerging facilitator for participant-driven research studies. Skin cancer research is particularly amenable to this approach, as phone cameras enable self-examination and documentation of mole abnormalities that may signal a progression towards melanoma. Aggregation and open sharing of this participant-collected data can be foundational for research and the development of early cancer detection tools. Here we describe data from Mole Mapper, an iPhone-based observational study built using the Apple ResearchKit framework. The Mole Mapper app was designed to collect participant-provided images and measurements of moles, together with demographic and behavioral information relating to melanoma risk. The study cohort includes 2,069 participants who contributed 1,920 demographic surveys, 3,274 mole measurements, and 2,422 curated mole images. Survey data recapitulates associations between melanoma and known demographic risks, with red hair as the most significant factor in this cohort. Participant-provided mole measurements indicate an average mole size of 3.95 mm. These data have been made available to engage researchers in a collaborative, multidisciplinary effort to better understand and prevent melanoma.


Daily Minutes of Unprotected Sun Exposure (MUSE) Inventory: Measure description and comparisons to UVR sensor and sun protection survey data.

  • Tammy K Stump‎ et al.
  • Preventive medicine reports‎
  • 2018‎

One in five US adults will be diagnosed with skin cancer. As most skin cancers are attributable to sun exposure, this risk factor is an important target for research and intervention. Most sun exposure measures assess frequency of specific sun-protection behaviors, which does not account for the use of multiple, potentially overlapping sun-protection methods. In contrast, the Daily Minutes of Unprotected Sun Exposure (MUSE) Inventory assesses sun-protection behavior during self-reported activities, providing several useful metrics, including duration of unprotected sun exposure on 17 body sites, combined to yield an overall MUSE score weighted by percent of body exposed. The present study was conducted July-September 2017, in Chicago, IL USA. For 10 days, participants (39 melanoma survivors; Mage = 58.59, 64.5% female) wore an ultraviolet radiation (UVR) sensor and completed the Daily MUSE Inventory each evening. The Sun Habits Survey was completed at the end of the study. Outdoor time reported in the MUSE Inventory significantly predicted outdoor time recorded by UVR sensors, B = 0.53, p < .001. For all sun-protection behaviors except shade, reports from the Daily MUSE Inventory (i.e., percentage of outdoor time a particular strategy was used) correlated with frequency ratings of the same strategy from the Sun Habits Survey (rs = 0.66-0.75, p < .05). In sum, the Daily MUSE Inventory corresponds with sensor and survey data, and provides a novel metric of unprotected sun exposure that will be useful for evaluating overall extent of sun exposure, including exposure on several smaller body sites that are at high risk for skin cancer.


Using a 3D Culture System to Differentiate Visceral Adipocytes In Vitro.

  • Margo P Emont‎ et al.
  • Endocrinology‎
  • 2015‎

It has long been recognized that body fat distribution and regional adiposity play a major role in the control of metabolic homeostasis. However, the ability to study and compare the cell autonomous regulation and response of adipocytes from different fat depots has been hampered by the difficulty of inducing preadipocytes isolated from the visceral depot to differentiate into mature adipocytes in culture. Here, we present an easily created 3-dimensional (3D) culture system that can be used to differentiate preadipocytes from the visceral depot as robustly as those from the sc depot. The cells differentiated in these 3D collagen gels are mature adipocytes that retain depot-specific characteristics, as determined by imaging, gene expression, and functional assays. This 3D culture system therefore allows for study of the development and function of adipocytes from both depots in vitro and may ultimately lead to a greater understanding of site-specific functional differences of adipose tissues to metabolic dysregulation.


Selenium for the prevention of cutaneous melanoma.

  • Pamela B Cassidy‎ et al.
  • Nutrients‎
  • 2013‎

The role of selenium (Se) supplementation in cancer prevention is controversial; effects often depend on the nutritional status of the subject and on the chemical form in which Se is provided. We used a combination of in vitro and in vivo models to study two unique therapeutic windows for intervention in the process of cutaneous melanomagenisis, and to examine the utility of two different chemical forms of Se for prevention and treatment of melanoma. We studied the effects of Se in vitro on UV-induced oxidative stress in melanocytes, and on apoptosis and cell cycle progression in melanoma cells. In vivo, we used the HGF transgenic mouse model of UV-induced melanoma to demonstrate that topical treatment with l-selenomethionine results in a significant delay in the time required for UV-induced melanoma development, but also increases the rate of growth of those tumors once they appear. In a second mouse model, we found that oral administration of high dose methylseleninic acid significantly decreases the size of human melanoma xenografts. Our findings suggest that modestly elevation of selenium levels in the skin might risk acceleration of growth of incipient tumors. Additionally, certain Se compounds administered at very high doses could have utility for the treatment of fully-malignant tumors or prevention of recurrence.


A Systematic Review of Evidence-Based High School Melanoma Prevention Curricula.

  • Gina N Calco‎ et al.
  • Journal of cancer education : the official journal of the American Association for Cancer Education‎
  • 2023‎

Incorporation of melanoma prevention behaviors into daily lifestyles is difficult. Data suggest that high school educational programs on skin cancer prevention can be successful and should incorporate evidence-based teaching and learning strategies to achieve greatest impact. The goal of this systematic review is to describe evidence-based educational practices for a high-school melanoma curriculum through a comprehensive review of the literature. Ovid MEDLINE, Embase, CINAHL, and PyscINFO were searched in June 2020 for all original articles published between June 18, 1946 and June 17, 2020. All studies that used an educational curriculum to promote sun safety, skin exams, and early detection to high school students were included. A total of 25 studies with 22,683 adolescent participants were analyzed. Sixteen studies showed a significant increase in knowledge, twenty-one studies showed changes in behavior, and fifteen studies showed significant changes in attitudes. Limitations of this review include the heterogeneity of implementation and outcome reporting of educational curricula. These findings support incorporating active learning strategies as key aspects of creating an effective curriculum aimed at the prevention and early detection of melanoma.


MITF Is Regulated by Redox Signals Controlled by the Selenoprotein Thioredoxin Reductase 1.

  • Chelsey D Kline‎ et al.
  • Cancers‎
  • 2022‎

TR1 and other selenoproteins have paradoxical effects in melanocytes and melanomas. Increasing selenoprotein activity with supplemental selenium in a mouse model of UV-induced melanoma prevents oxidative damage to melanocytes and delays melanoma tumor formation. However, TR1 itself is positively associated with progression in human melanomas and facilitates metastasis in melanoma xenografts. Here, we report that melanocytes expressing a microRNA directed against TR1 (TR1low) grow more slowly than control cell lines and contain significantly less melanin. This phenotype is associated with lower tyrosinase (TYR) activity and reduced transcription of tyrosinase-like protein-1 (TYRP1). Melanoma cells in which the TR1 gene (TXNRD1) was disrupted using Crispr/Cas9 showed more dramatic effects including the complete loss of the melanocyte-specific isoform of MITF; other MITF isoforms were unaffected. We provide evidence that TR1 depletion results in oxidation of MITF itself. This newly discovered mechanism for redox modification of MITF has profound implications for controlling both pigmentation and tumorigenesis in cells of the melanocyte lineage.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: